Spontaneous Urban Vegetation: Reflections of Change in a Globalized World

2010 ◽  
Vol 5 (3) ◽  
pp. 299-315 ◽  
Author(s):  
Peter Del Tredici

Urban habitats are characterized by high levels of disturbance, impervious paving, and heat retention. These factors, acting in concert, alter soil, water, and air conditions in ways that promote the growth of stress-tolerant, early-successional vegetation on abandoned or unmaintained land. In most urban areas, a cosmopolitan array of spontaneous plants provide important ecological services that, in light of projected climate change impacts, are likely to become more significant in the future. Learning how to manage spontaneous urban vegetation to increase its ecological and social values may be a more sustainable strategy than attempting to restore historical ecosystems that flourished before the city existed.

Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 726
Author(s):  
Paul Carroll ◽  
Eeva Aarrevaara

Future climate conditions need to be considered in planning for urban areas. As well as considering how new structures would best endure in the future, it is important to take into account factors that contribute to the degradation of cultural heritage buildings in the urban setting. Climate change can cause an increase in structural degradation. In this paper, a review of both what these factors are and how they are addressed by urban planners is presented. A series of inquiries into the topic was carried out on town planning personnel and those involved in cultural heritage preservation in several towns and cities in Finland and in a small number of other European countries. The target group members were asked about observed climate change impacts on cultural heritage, about present steps being taken to protect urban cultural heritage, and also their views were obtained on how climate change impacts will be emphasised in the future in this regard. The results of the inquiry demonstrate that climate change is still considered only in a limited way in urban planning, and more interaction between different bodies, both planning and heritage authorities, as well as current research on climate change impacts, is needed in the field.


2017 ◽  
Author(s):  
Mook Bangalore ◽  
Andrew Smith ◽  
Ted Veldkamp

Abstract. With 70 percent of its population living in coastal areas and low-lying deltas, Vietnam is highly exposed to riverine and coastal flooding. This paper examines the exposure of the population and poor people in particular to current and future flooding in Vietnam and specifically in Ho Chi Minh City, using new high-resolution flood hazard maps and spatial socioeconomic data. The national-level analysis finds that a third of today’s population is already exposed to a flood, which occurs once every 25 years, assuming no protection. For the same return period flood under current socioeconomic conditions, climate change may increase the number exposed to 38 to 46 percent of the population. Climate change impacts can make frequent events as important as rare ones: the estimates suggest a 25-year flood under future conditions can expose more people than a 200-year flood under current conditions. Although poor districts are not found to be more exposed to floods at the national level, the city-level analysis of Ho Chi Minh City provides evidence that slum areas are highly exposed. The results of this paper show the benefits of investing today in flood risk management, and can provide guidance as to where future investments may be targeted.


2018 ◽  
Vol 163 ◽  
pp. 171-185 ◽  
Author(s):  
Ying Li ◽  
Ting Ren ◽  
Patrick L. Kinney ◽  
Andrew Joyner ◽  
Wei Zhang

2021 ◽  
Author(s):  
Gaby S. Langendijk ◽  
Diana Rechid ◽  
Daniela Jacob

<p>Urban areas are prone to climate change impacts. A transition towards sustainable and climate-resilient urban areas is relying heavily on useful, evidence-based climate information on urban scales. However, current climate data and information produced by urban or climate models are either not scale compliant for cities, or do not cover essential parameters and/or urban-rural interactions under climate change conditions. Furthermore, although e.g. the urban heat island may be better understood, other phenomena, such as moisture change, are little researched. Our research shows the potential of regional climate models, within the EURO-CORDEX framework, to provide climate projections and information on urban scales for 11km and 3km grid size. The city of Berlin is taken as a case-study. The results on the 11km spatial scale show that the regional climate models simulate a distinct difference between Berlin and its surroundings for temperature and humidity related variables. There is an increase in urban dry island conditions in Berlin towards the end of the 21st century. To gain a more detailed understanding of climate change impacts, extreme weather conditions were investigated under a 2°C global warming and further downscaled to the 3km scale. This enables the exploration of differences of the meteorological processes between the 11km and 3km scales, and the implications for urban areas and its surroundings. The overall study shows the potential of regional climate models to provide climate change information on urban scales.</p>


2020 ◽  
Vol 3 (1) ◽  
pp. 77-88 ◽  
Author(s):  
M. A. Cardoso ◽  
R. S. Brito ◽  
M. C. Almeida

Abstract Urban areas are complex, vulnerable and continuously evolving, with interacting strategic services, assets and stakeholders. Potential effects of climate dynamics on urban areas may include the aggravation of current conditions, with identification of new hazards or risk drivers. These challenges require an integrated and forward-looking approach to sustainable urban development. Several tools and frameworks for assessing resilience have already been developed in different fields of study. However, aiming to focus on climate change, urban services and infrastructure, some specific needs were identified. In this light, a resilience assessment framework was developed to direct and facilitate an objective-driven resilience diagnosis of urban cities and services; to support decisions on selection of resilience measures and development of strategies to enhance resilience to climate change; to outline a path to co-build resilience action plans; and to track the progress of resilience in the city or in the service over time. The paper presents an outline of the structure of the framework and details the approach used in its development, including engagement tools and actions undertaken to assure stakeholder involvement in its development, validation and testing.


2020 ◽  
Vol 12 (16) ◽  
pp. 6430
Author(s):  
Marc Velasco ◽  
Beniamino Russo ◽  
Eduardo Martínez-Gomariz

This Special Issue brings together recent research findings related to urban resilience, in particular taking into account climate change impacts and hydrological hazards. Taking advantage of the work done in the H2020 RESCCUE project, 12 different papers dealing with several issues related to the resilience of urban areas have been published. Due to the complexity of cities, urban resilience management is one of the key challenges that our societies have to deal with in the near future. In addition, urban resilience is a transversal and multi-sectorial issue, affecting different urban services, several hazards, and all the steps of the risk management cycle. This is precisely why the papers contained in this Special Issue focus on varied subjects, such as impact assessments, urban resilience assessments, adaptation strategies, flood risk and urban services, always focusing on at least two of these topics.


2015 ◽  
Vol 15 (19) ◽  
pp. 27041-27085
Author(s):  
K. Markakis ◽  
M. Valari ◽  
M. Engardt ◽  
G. Lacressonnière ◽  
R. Vautard ◽  
...  

Abstract. Ozone, PM10 and PM2.5 concentrations over Paris, France and Stockholm, Sweden were modeled at 4 and 1 \\unit{km} horizontal resolutions respectively for the present and 2050 periods employing decade-long simulations. We account for large-scale global climate change (RCP-4.5) and fine resolution bottom-up emission projections developed by local experts and quantify their impact on future pollutant concentrations. Moreover, we identify biases related to the implementation of regional scale emission projections over the study areas by comparing modeled pollutant concentrations between the fine and coarse scale simulations. We show that over urban areas with major regional contribution (e.g., the city of Stockholm) the bias due to coarse emission inventory may be significant and lead to policy misclassification. Our results stress the need to better understand the mechanism of bias propagation across the modeling scales in order to design more successful local-scale strategies. We find that the impact of climate change is spatially homogeneous in both regions, implying strong regional influence. The climate benefit for ozone (daily average and maximum) is up to −5 % for Paris and −2 % for Stockholm city. The joined climate benefit on PM2.5 and PM10 in Paris is between −10 and −5 % while for Stockholm we observe mixed trends up to 3 % depending on season and size class. In Stockholm, emission mitigation leads to concentration reductions up to 15 % for daily average and maximum ozone and 20 % for PM and through a sensitivity analysis we show that this response is entirely due to changes in emissions at the regional scale. On the contrary, over the city of Paris (VOC-limited photochemical regime), local mitigation of NOx emissions increases future ozone concentrations due to ozone titration inhibition. This competing trend between the respective roles of emission and climate change, results in an increase in 2050 daily average ozone by 2.5 % in Paris. Climate and not emission change appears to be the most influential factor for maximum ozone concentration over the city of Paris, which may be particularly interesting in a health impact perspective.


Author(s):  
Andrew Kirby

 This paper explores the importance of adaptation to climate change impacts in urban areas. The complexity of existing and likely impacts poses unique challenges to all aspects of society, from state to polity and economy. These in turn pose methodological challenges to academic practice, demanding the integration of macro and micro perspectives and pure and applied research. The paper argues that geographers can make significant contributions to this scholarship. 


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2658 ◽  
Author(s):  
Eduardo Martínez-Gomariz ◽  
Luca Locatelli ◽  
María Guerrero ◽  
Beniamino Russo ◽  
Montse Martínez

Pluvial flooding in Badalona (Spain) occurs during high rainfall intensity events, which in the future could be more frequent according to the latest report from the Intergovernmental Panel on Climate Change (IPCC). In this context, the present study aims at quantifying the potential impacts of climate change for the city of Badalona. A comprehensive pluvial flood multi risk assessment has been carried out for the entire municipality. The assessment has a twofold target: People safety, based on both pedestrians’ and vehicles’ stability, and impacts on the economic sector in terms of direct damages on properties and vehicles, and indirect damages due to businesses interruption. Risks and damages have also been assessed for the projected future rainfall conditions which enabled the comparison with the current ones, thereby estimating their potential increment. Moreover, the obtained results should be the first step to assess the efficiency of adaptation measures. The novelty of this paper is the integration of a detailed 1D/2D urban drainage model with multiple risk criteria. Although, the proposed methodology was tested for the case study of Badalona (Spain), it can be considered generally applicable to other urban areas affected by pluvial flooding.


Sign in / Sign up

Export Citation Format

Share Document