scholarly journals Adsorption of Methyl Orange from Wastewater by using Biochar

2019 ◽  
Vol 20 (3) ◽  
pp. 23-29
Author(s):  
Mohammed Abdulrahman Hanoon ◽  
Muthanna J. Ahmed

The biochar prepared from sawdust raw material was applied in this study for the treatment of wastewater polluted with methyl orange dye. The effect of pH (2-11), initial concertation (50-250 mg/L) and time were studied. The isotherm of Langmuir, Frendluch and temkin models studied. The Langmuir model was the best to explain the adsorption process, maximum uptake was 136.67 mg/g at 25Co of methyl orange dye. Equilibrium reached after four hours of contact for most adsorbents.The values of thermodynamic parameters ∆G were negative at various temperatures, so the process spontaneous, while ∆H values were 16683 j/mol and ∆S values was 60.82 j/mol.k.

Author(s):  
Hao Zhu ◽  
Haiming Zou

Abstract In this work, Spirulina residue was used as the raw material to prepare different biochars by changing the pyrolysis time. Moreover, the obtained products were characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction energy spectrum. This experiment used the batch adsorption method to study the adsorption effect of pH, dosage, and pyrolysis time on methyl orange. The adsorption of methyl orange onto Spirulina residue biochar fitted with the Langmuir isotherm model and pseudo-second-order kinetics. The results showed that the surface functional groups of Spirulina residue biochar obtained by dry pyrolysis were abundant, and it can effectively adsorb methyl orange dye in an aqueous solution. The sample prepared at 500 °C for 5 h had the best adsorption effect on methyl orange. The change of pyrolysis time will affect the physicochemical properties of biochar from Spirulina residue, thereby affecting its adsorption effect on methyl orange dye. The analysis showed that the chemical adsorption of Spirulina residue biochar on methyl orange might be the primary way of dye removal. The results can provide a reference for preparing biochar from algae residue and biochar application in the removal of dye wastewater.


2012 ◽  
Vol 65 (9) ◽  
pp. 1632-1638 ◽  
Author(s):  
Abdul Halim Abdullah ◽  
Eshraq Ahmed Abdullah ◽  
Zulkarnain Zainal ◽  
Mohd Zobir Hussein ◽  
Tan Kar Ban

The adsorption of methyl orange dye from aqueous solution onto penta-bismuth hepta-oxide nitrate, Bi5O7NO3, synthesized by precipitation method, was studied in a batch adsorption system. The effects of operation parameters such as adsorbent dose, initial dye concentration, pH and temperature were investigated. The adsorption equilibrium and mechanism of adsorption was evaluated by Langmuir and Freundlich isotherm and different kinetic models, respectively. The results indicate that adsorption is highly dependent on all operation parameters. At optimum conditions, the adsorption capacity was found to be 18.9 mg/g. The adsorption data fits well with the Langmuir isotherm model indicating monolayer coverage of adsorbate molecules on the surface of Bi5O7NO3. The kinetic studies show that the adsorption process is a second-order kinetic reaction. Although intra-particle diffusion limits the rate of adsorption, the multi-linearity plot of intra-particle model shows the importance of both film and intra-particle diffusion as the rate-limiting steps of the dye removal. Thermodynamic parameters show that the adsorption process is endothermic, spontaneous and favourable at high temperature.


2021 ◽  
Vol 267 ◽  
pp. 02020
Author(s):  
Yanping Qu ◽  
Dongqing Yan ◽  
Rushuang Su ◽  
Wenshuo Hu ◽  
Yanyan Dai

Used fly ash as raw material, it was modified by acid, alkali and high temperature to produce modified fly ash adsorbent, sulfuric acid modified fly ash adsorbent, sodium hydroxide modified fly ash adsorbent and high temperature modified fly ash adsorbent. In this paper, the effects of adsorbent dosage, adsorbent adsorption time, initial dye concentration, wastewater pH and temperature on dye adsorption were studied. The results showed that: the acid modified fly ash adsorbent had a good treatment effect on the dye; when the dosage of fly ash was 1.00 g, the adsorption time was 90 min, the pH of wastewater was 4, and the temperature was 45 °C, the decolorization rate of 60 mg/L methyl orange dye can reached more than 70%; when the dosage of fly ash was 0.20 g, the adsorption time was 60 min, the pH of wastewater was 3, and the temperature was 35 °C, the decolorization rate of 20 mg/L methyl orange dye can be achieved. The decolorization rate of Congo red can reached more than 80%.


2012 ◽  
Vol 610-613 ◽  
pp. 1639-1644
Author(s):  
Wei Fang Dong ◽  
Li Hua Zang ◽  
Qi Lei Feng

This study investigated the treatment of methyl orange dye from aqueous solution with granular activated carbon as sorbents. Adsorption experiments were carried out at different contact time, the dosage of granular activated carbon, pH and initial dye concentration.Orthogonal experiment was designed to analyze the influence degree of operating parameters for optimizing adsorption process. The results demonstrated that the dosage of granular activated carbon had the greatest impact on the removal efficiency of methyl orange , followed by pH, contact time and initial concentration of methyl orange . The granular activated carbon possessed good adsorption capacity to methyl orange which the removal efficiency could reached 98.06% at the optimum dosage 4g and optimum time 90min.


2020 ◽  
Vol 16 ◽  
Author(s):  
Nimisha Jadon ◽  
Gulzar Ahmad Bhat ◽  
Manoharmayum Vishwanath Sharma ◽  
Harendra Kumar Sharma

Background: The study focuses on the synthesis of chitosan/ Fe2O3 nanocomposite, its characterization and application in methyl orange dye degradation. Methods: The synthesized chitosan/ Fe2O3 nanocomposite was characterized with Powder X-Ray Diffraction, Fourier Transformation Infrared Spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and UV-Vis Spectroscopy. Results: The characterization showed that the Fe2O3nanoparticles were embedded in the polymer matrix of chitosan. The size of the Fe2O3nanoparticles were less than 10nm and the crystallite size was 1.22 nm.The synthesized chitosan/ Fe2O3nanocomposite was tested for methyl orange degradation using different parameters such as effect of contact time, effect of dose, effect of concentration and effect of pH for the degradation of methyl orange dye in aqueous solution.The Fruendlich, Langmuir and Temkin isotherm studies were also conducted for adsoption of methyl orange on Chitosan/ Fe2O3nanocomposite. Conclusion: The study indicated that the synthesized chitosan/Fe2O3 nanocomposite had the potential of degrading methyl orange dye up to 75.04% under the set condition in this experiment which indicate that Chitosan/ Fe2O3 nanocomposite is a viable option that can be used for the degradation of methyl orange dye.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4483
Author(s):  
Yuyingnan Liu ◽  
Xinrui Xu ◽  
Bin Qu ◽  
Xiaofeng Liu ◽  
Weiming Yi ◽  
...  

In this study, corn cob was used as raw material and modified methods employing KOH and KMnO4 were used to prepare activated carbon with high adsorption capacity for mercury ions. Experiments on the effects of different influencing factors on the adsorption of mercury ions were undertaken. The results showed that when modified with KOH, the optimal adsorption time was 120 min, the optimum pH was 4; when modified with KMnO4, the optimal adsorption time was 60 min, the optimal pH was 3, and the optimal amount of adsorbent and the initial concentration were both 0.40 g/L and 100 mg/L under both modified conditions. The adsorption process conforms to the pseudo-second-order kinetic model and Langmuir model. Scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and Zeta potential characterization results showed that the adsorption process is mainly physical adsorption, surface complexation and ion exchange.


2020 ◽  
Vol 18 (1) ◽  
pp. 129-137
Author(s):  
Yayuk Astuti ◽  
Rizka Andianingrum ◽  
Abdul Haris ◽  
Adi Darmawan ◽  

AbstractSynthesis of bismuth oxide synthesis through the precipitation method using H2C2O4 and Na2CO3 precipitating agents, identification of physicochemical properties and its photocatalysis activity for methyl orange degradation were conducted. The bismuth oxide synthesis was undertaken by dissolving Bi(NO3)3.5H2O in HNO3, then added precipitating agents to form precipitate. The results showed that bismuth oxide produced by H2C2O4 precipitating agent was a yellow powder containing a mixture of α-Bi2O3 (monoclinic) and β-Bi2O3 (tetragonal), porous with size of 28-85 μm. Meanwhile, the use of Na2CO3 as precipitating agent resulted in bismuth oxide consisting of α-Bi2O3 and β-Bi2O3 and Bi2O4, irregular shape without pore being 40-115 μm in size. Bismuth oxide synthesized with H2C2O4 precipitating agent showed higher photocatalytic activity compared to bismuth oxide synthesized using Na2CO3 on degrading methyl orange dye with degradation rate constants of 2.35x10-5 s-1 for H2C2O4 and 1.81x10-5 s-1 for Na2CO3.


Sign in / Sign up

Export Citation Format

Share Document