Carbohydrates as potential diagnostic tracers for brain tumors

1976 ◽  
Vol 44 (6) ◽  
pp. 668-675 ◽  
Author(s):  
Willem Wassenaar ◽  
Charles H. Tator

✓ Currently available diagnostic tracers for brain tumors are not specific. Tumor-specific tracers would improve the detection of brain tumors by gamma encephalography. Glucose is an important substrate for tumor metabolism and is known to be taken up in large amounts. The authors have studied five labeled carbohydrates in an attempt to find a tumor-specific tracer: three were tritiated (L-galactose-1-3H, L-fucose-3H, and 4,6-dideoxy-xylo-hexose-3H) and two were radioiodinated (methyl-6-125I-6-deoxy-D-glucoside and 6-125I-6-deoxy-D-glucose). The uptake of these tracers by a transplantable mouse ependymoblastoma after intravenous injection was determined by liquid and well scintillation counting. The highest tumor-to-brain ratio was 7.1 to 1 for the tritiated tracers and 6.2 to 1 for the radioiodinated tracers. Although these ratios are not high enough for gamma encephalography, one of the iodinated tracers may be useful for enhancement of contrast in computerized axial tomography.

1977 ◽  
Vol 46 (2) ◽  
pp. 256-258 ◽  
Author(s):  
Arthur I. Kobrine ◽  
Eugene Timmins ◽  
Rodwan K. Rajjoub ◽  
Hugo V. Rizzoli ◽  
David O. Davis

✓ The authors documented by computerized axial tomography a case of massive brain swelling occurring within 20 minutes of a closed head injury. It is suggested that the cause of the brain swelling is acute vascular dilatation.


1976 ◽  
Vol 44 (5) ◽  
pp. 556-561 ◽  
Author(s):  
Joseph C. Maroon ◽  
John S. Kennerdell

✓ The authors describe their microsurgical lateral orbital approach to intraorbital tumors. In seven patients ultrasonic scanning, computerized axial tomography, polytomography, orbital venography, and arteriography have allowed precise intraorbital tumor localization relative to the optic nerve. The authors believe that circumscribed tumors superior, lateral, or inferior to the optic nerve can be safely and completely removed through a 30–35-mm lateral skin incision with microsurgical dissecting techniques. A combined neurosurgical-ophthalmological team approach is emphasized.


1974 ◽  
Vol 40 (6) ◽  
pp. 706-716 ◽  
Author(s):  
Yukitaka Ushio ◽  
Toru Hayakawa ◽  
Heitaro Mogami

✓ Malignant gliomas were induced in strain ddN mice by intracerebral implantation of a 20-methylcholanthrene pellet. The uptake and distribution of tritiated methotrexate (MTX-3H) in the tumor were investigated by radioactive assay and radioautography after single intravenous or intrathecal injections. By either route, a large amount of MTX-3H was taken up by gliomas, and a significantly higher concentration was observed in tumor than in the brain tissue. At 24 hours after intrathecal administration, the uptake of MTX-3H by gliomas exceeded that achieved after intravenous injection, although the drug dosage in the latter was 10 times that in the former.


1976 ◽  
Vol 44 (6) ◽  
pp. 759-760 ◽  
Author(s):  
Fred C. Shipps ◽  
Anthony D'Agostino ◽  
John Raaf

✓ The authors describe a frame with guides to facilitate accurate correlation of the planes of brain-specimen sections with computerized axial tomography brain scans.


1982 ◽  
Vol 57 (5) ◽  
pp. 690-696 ◽  
Author(s):  
Robert A. Sanford ◽  
Jose Bebin ◽  
R. Wayne Smith

✓ The authors present the cases of two young adults with low-grade astrocytomas limited to the aqueductal region of the tectum of the mesencephalon. The characteristic presentation of hydrocephalus without brain-stem signs is described. Careful radiological examination, including computerized axial tomography, failed to reveal any evidence of tumor. The diagnosis was established at postmortem examination. Literature review yielded 12 previous cases of similar presentation.


2002 ◽  
Vol 97 ◽  
pp. 542-550 ◽  
Author(s):  
Marc Levivier ◽  
David Wikler ◽  
Nicolas Massager ◽  
Philippe David ◽  
Daniel Devriendt ◽  
...  

Object. The authors review their experience with the clinical development and routine use of positron emission tomography (PET) during stereotactic procedures, including the use of PET-guided gamma knife radiosurgery (GKS). Methods. Techniques have been developed for the routine use of stereotactic PET, and accumulated experience using PET-guided stereotactic procedures over the past 10 years includes more than 150 stereotactic biopsies, 43 neuronavigation procedures, and 34 cases treated with GKS. Positron emission tomography—guided GKS was performed in 24 patients with primary brain tumors (four pilocytic astrocytomas, five low-grade astrocytomas or oligodendrogliomas, seven anaplastic astrocytomas or ependymomas, five glioblastomas, and three neurocytomas), five patients with metastases (single or multiple lesions), and five patients with pituitary adenomas. Conclusions. Data obtained with PET scanning can be integrated with GKS treatment planning, enabling access to metabolic information with high spatial accuracy. Positron emission tomography data can be successfully combined with magnetic resonance imaging data to provide specific information for defining the target volume for the radiosurgical treatment in patients with recurrent brain tumors, such as glioma, metastasis, and pituitary adenoma. This approach is particularly useful for optimizing target selection for infiltrating or ill-defined brain lesions. The use of PET scanning contributed data in 31 cases (93%) and information that was specifically utilized to adapt the target volume in 25 cases (74%). It would seem that the integration of PET data into GKS treatment planning may represent an important step toward further developments in radiosurgery: this approach provides additional information that may open new perspectives for the optimization of the treatment of brain tumors.


2002 ◽  
Vol 97 ◽  
pp. 484-488 ◽  
Author(s):  
Toru Serizawa ◽  
Junichi Ono ◽  
Toshihiko Iichi ◽  
Shinji Matsuda ◽  
Makoto Sato ◽  
...  

Object. The purpose of this retrospective study was to evaluate the effectiveness of gamma knife radiosurgery (GKS) for the treatment of metastatic brain tumors from lung cancer, with particular reference to small cell lung carcinoma (SCLC) compared with non-SCLC (NSCLC). Methods. Two hundred forty-five consecutive patients meeting the following five criteria were evaluated in this study: 1) no prior brain tumor treatment; 2) 25 or fewer lesions; 3) a maximum of three tumors with a diameter of 20 mm or larger; 4) no surgically inaccessible tumor 30 mm or greater in diameter; and 5) more than 3 months of life expectancy. According to the same treatment protocol, large tumors (≥ 30 mm) were surgically removed and the other small lesions (< 30 mm) were treated with GKS. New lesions were treated with repeated GKS. Chemotherapy was administered, according to the primary physician's protocol, as aggressively as possible. Progression-free, overall, neurological, qualitative, and new lesion—free survival were calculated with the Kaplan—Meier method and were compared in the SCLC and NSCLC groups by using the log-rank test. The poor prognostic factors for each type of survival were also analyzed with the Cox proportional hazard model. Conclusions. Tumor control rate at 1 year was 94.5% in the SCLC group and 98% in the NSCLC group. The median survival time was 9.1 months in the SCLC group and 8.6 months in the NSCLC group. The 1-year survival rates in the SCLC group were 86.5% for neurological survival and 68.9% for qualitative survival; those in the NSCLC group were 87.9% for neurological and 78.9% for qualitative survival. The estimated median interval to emergence of a new lesion was 6.9 months in the SCLC group and 9.8 months in the NSCLC group. There was no significant difference between the two groups for any type of survival; this finding was verified by multivariate analysis. The results of this study suggest that GKS appears to be as effective in treating brain metastases from SCLC as for those from NSCLC.


2005 ◽  
Vol 102 (Special_Supplement) ◽  
pp. 180-184 ◽  
Author(s):  
György T. Szeifert ◽  
Isabelle Salmon ◽  
Sandrine Rorive ◽  
Nicolas Massager ◽  
Daniel Devriendt ◽  
...  

Object. The aim of this study was to analyze the cellular immune response and histopathological changes in secondary brain tumors after gamma knife surgery (GKS). Methods. Two hundred ten patients with cerebral metastases underwent GKS. Seven patients underwent subsequent craniotomy for tumor removal between 1 and 33 months after GKS. Four of these patients had one tumor, two patients had two tumors, and one patient had three. Histological and immunohistochemical investigations were performed. In addition to routine H & E and Mallory trichrome staining, immunohistochemical reactions were conducted to characterize the phenotypic nature of the cell population contributing to the tissue immune response to neoplastic deposits after radiosurgery. Light microscopy revealed an intensive lymphocytic infiltration in the parenchyma and stroma of tumor samples obtained in patients in whom surgery was performed over 6 months after GKS. Contrary to this, extensive areas of tissue necrosis with either an absent or scanty lymphoid population were observed in the poorly controlled neoplastic specimens obtained in cases in which surgery was undertaken in patients less than 6 months after GKS. Immunohistochemical characterization demonstrated the predominance of CD3-positive T cells in the lymphoid infiltration. Conclusions. Histopathological findings of the present study are consistent with a cellular immune response of natural killer cells against metastatic brain tumors, presumably stimulated by the ionizing energy of focused radiation.


1993 ◽  
Vol 79 (5) ◽  
pp. 729-735 ◽  
Author(s):  
David Barba ◽  
Joseph Hardin ◽  
Jasodhara Ray ◽  
Fred H. Gage

✓ Gene therapy has many potential applications in central nervous system (CNS) disorders, including the selective killing of tumor cells in the brain. A rat brain tumor model was used to test the herpes simplex virus (HSV)-thymidine kinase (TK) gene for its ability to selectively kill C6 and 9L tumor cells in the brain following systemic administration of the nucleoside analog ganciclovir. The HSV-TK gene was introduced in vitro into tumor cells (C6-TK and 9L-TK), then these modified tumor cells were evaluated for their sensitivity to cell killing by ganciclovir. In a dose-response assay, both C6-TK and 9L-TK cells were 100 times more sensitive to killing by ganciclovir (median lethal dose: C6-TK, 0.1 µg ganciclovir/ml; C6, 5.0 µg ganciclovir/ml) than unmodified wild-type tumor cells or cultured fibroblasts. In vivo studies confirmed the ability of intraperitoneal ganciclovir administration to kill established brain tumors in rats as quantified by both stereological assessment of brain tumor volumes and studies of animal survival over 90 days. Rats with brain tumors established by intracerebral injection of wild-type or HSV-TK modified tumor cells or by a combination of wild-type and HSV-TK-modified cells were studied with and without ganciclovir treatments. Stereological methods determined that ganciclovir treatment eliminated tumors composed of HSV-TK-modified cells while control tumors grew as expected (p < 0.001). In survival studies, all 10 rats with 9L-TK tumors treated with ganciclovir survived 90 days while all untreated rats died within 25 days. Curiously, tumors composed of combinations of 9L and 9L-TK cells could be eliminated by ganciclovir treatments even when only one-half of the tumor cells carried the HSV-TK gene. While not completely understood, this additional tumor cell killing appears to be both tumor selective and local in nature. It is concluded that HSV-TK gene therapy with ganciclovir treatment does selectively kill tumor cells in the brain and has many potential applications in CNS disorders, including the treatment of cancer.


1999 ◽  
Vol 90 (2) ◽  
pp. 300-305 ◽  
Author(s):  
Leif Østergaard ◽  
Fred H. Hochberg ◽  
James D. Rabinov ◽  
A. Gregory Sorensen ◽  
Michael Lev ◽  
...  

Object. In this study the authors assessed the early changes in brain tumor physiology associated with glucocorticoid administration. Glucocorticoids have a dramatic effect on symptoms in patients with brain tumors over a time scale ranging from minutes to a few hours. Previous studies have indicated that glucocorticoids may act either by decreasing cerebral blood volume (CBV) or blood-tumor barrier (BTB) permeability and thereby the degree of vasogenic edema.Methods. Using magnetic resonance (MR) imaging, the authors examined the acute changes in CBV, cerebral blood flow (CBF), and BTB permeability to gadolinium-diethylenetriamine pentaacetic acid after administration of dexamethasone in six patients with brain tumors. In patients with acute decreases in BTB permeability after dexamethasone administration, changes in the degree of edema were assessed using the apparent diffusion coefficient of water.Conclusions. Dexamethasone was found to cause a dramatic decrease in BTB permeability and regional CBV but no significant changes in CBF or the degree of edema. The authors found that MR imaging provides a powerful tool for investigating the pathophysiological changes associated with the clinical effects of glucocorticoids.


Sign in / Sign up

Export Citation Format

Share Document