Benzodiazepine receptors and cerebrospinal fluid formation

1990 ◽  
Vol 72 (5) ◽  
pp. 759-762 ◽  
Author(s):  
Gregg L. Williams ◽  
Michael Pollay ◽  
Thomas Seale ◽  
Brent Hisey ◽  
P. Alex Roberts

✓ There is autoradiographic evidence that peripheral-type benzodiazepine ligands bind with high affinity to the membranes of choroid plexus tissue. In this study, the binding of a 4′-chloro analog of diazepam (Ro 5-4864) to rabbit choroid plexus and cerebral cortex was accomplished utilizing an in vitro radioactive assay method. A kinetic analysis of this binding revealed a relatively high affinity of this ligand (KD) for peripheral binding sites in plexus tissue (KD = 16.1 nM/mg protein). There was a 4.6-fold greater density of binding sites (total receptor density (Bmax) = 2.3 pmol/mg) in choroidal membrane as compared to cortical tissue (Bmax = 0.5 pmol/mg). In 40 rabbits in which a ventricular perfusion system was used, the rate of cerebrospinal fluid (CSF) formation was observed to decrease some 48% in the presence of 10−4 M Ro 5-4864, although some inhibition of secretory activity was still noted at a CSF concentration of 10−8 M. The choroid plexus tissue levels of adenosine 3′,5′cyclic monophosphate (cAMP) and adenosine triphosphatase (ATPase) were not affected by 10−4 M Ro 5-4864. The results of this study support the notion that the specific benzodiazepine peripheral binding sites in choroid plexus serve to modulate CSF formation. The mechanism of action is poorly understood but does not involve the transport ATPase system or the second messenger cAMP.

1990 ◽  
Vol 258 (2) ◽  
pp. C211-C216 ◽  
Author(s):  
C. E. Johanson ◽  
S. M. Sweeney ◽  
J. T. Parmelee ◽  
M. H. Epstein

Cerebrospinal fluid formation stems primarily from the transport of Na and Cl in choroid plexus (CP). To characterize properties and modulation of choroidal transporters, we tested diuretics and other agents for ability to alter ion transport in vitro. Adult Sprague-Dawley rats were the source of CPs preincubated with drug for 20 min and then transferred to cerebrospinal fluid (CSF) medium containing 22Na or 36Cl with [3H]mannitol (extracellular correction). Complete base-line curves were established for cellular uptake of Na and Cl at 37 degrees C. The half-maximal uptake occurred at 12 s, so it was used to assess drug effects on rate of transport (nmol Na or Cl/mg CP). Bumetanide (10(-5) and 10(-4) M) decreased uptake of Na and Cl with maximal inhibition (up to 45%) at 10(-5) M. Another cotransport inhibitor, furosemide (10(-4) M), reduced transport of Na by 25% and Cl by 33%. However, acetazolamide (10(-4) M) and atriopeptin III (10(-7) M) significantly lowered uptake of Na (but not Cl), suggesting effect(s) other than on cotransport. The disulfonic stilbene 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS; 10(-4) M), known to inhibit Cl-HCO3 exchange, substantially reduced the transport of 36Cl. Bumetanide plus DIDS (both 10(-4) M) caused additive inhibition of 90% of Cl uptake, which provides strong evidence for the existence of both cotransport and antiport Cl carriers. Overall, this in vitro analysis, uncomplicated by variables of blood flow and neural tone, indicates the presence in rat CP of the cotransport of Na and Cl in addition to the established Na-H and Cl-HCO3 exchangers.


1974 ◽  
Vol 40 (3) ◽  
pp. 381-385 ◽  
Author(s):  
Howard M. Eisenberg ◽  
J. Gordon McComb ◽  
Antonio V. Lorenzo

✓ With the use of a ventricular perfusion technique, a cerebrospinal fluid formation rate of 1.4 ml/min was determined in a 5-month-old child with a choroid plexus papilloma and hydrocephalus. This rate was slightly greater than four times the rate observed in normal children. The clinical course, as well as a measured absorption rate, indicated that the patient's capacity for absorption was normal.


1986 ◽  
Vol 6 (4) ◽  
pp. 463-470 ◽  
Author(s):  
Rajesh N. Kalaria ◽  
Sami I. Harik

We studied, by ligand binding methods, the two adenosine receptors, A, and A2, in rat and pig cerebral microvessels and pig choroid plexus. Ligand binding to cerebral microvessels was compared with that to membranes of the cerebral cortex. [3H]Cyclohexyladenosine and [3H]l-phenylisopropyladenosine were the ligands used for A1-receptors, and [3H]5'- N-ethylcarboxamide adenosine ([3H]NECA) was used to assess A2-receptors. We report that cerebral microvessels and choroid plexus exhibit specific [3H]NECA binding, but have no appreciable A1-receptor ligand binding sites. Specific binding of [3H]NECA to cerebral microvessels, choroid plexus, and cerebral cortex was saturable and suggested the existence of two classes of A2-receptor sites: high-affinity ( Kd ∼ 250 n M) and low-affinity ( Kd ∼ 1–2 μ M) sites. The Kd and Bmax of NECA binding to cerebral microvessels and cerebral cortex were similar within each species. Our results, indicating the existence of A2-receptors in cerebral microvessels, are consistent with results of increased adenylate cyclase activity by adenosine and some of its analogues in these microvessels.


1979 ◽  
Vol 50 (5) ◽  
pp. 677-681 ◽  
Author(s):  
Steven K. Gudeman ◽  
Humbert G. Sullivan ◽  
Michael J. Rosner ◽  
Donald P. Becker

✓ The authors report a patient with bilateral papillomas of the choroid plexus of the lateral ventricles with documentation of cerebrospinal fluid (CSF) hypersecretion causing hydrocephalus. Special attention is given to the large volume of CSF produced by these tumors (removal of one tumor reduced CSF outflow by one-half) and to the fact that CSF diversion was not required after both tumors were removed. Since tumor removal alone was sufficient to stop the progression of hydrocephalus, we feel that this case supports the concept that elevated CSF production by itself is sufficient to cause hydrocephalus in patients with papillomas of the choroid plexus.


2003 ◽  
Vol 284 (2) ◽  
pp. G328-G339 ◽  
Author(s):  
P. Singh ◽  
X. Lu ◽  
S. Cobb ◽  
B. T. Miller ◽  
N. Tarasova ◽  
...  

Proliferation and carcinogenesis of the large intestinal epithelial cells (IEC) cells is significantly increased in transgenic mice that overexpress the precursor progastrin (PG) peptide. It is not known if the in vivo growth effects of PG on IEC cells are mediated directly or indirectly. Full-length recombinant human PG (rhPG1–80) was generated to examine possible direct effects of PG on IEC cells. Surprisingly, rhPG (0.1–1.0 nM) was more effective than the completely processed gastrin 17 (G17) peptide as a growth factor. Even though IEC cells did not express CCK1and CCK2receptors (-R), fluorescently labeled G17 and Gly-extended G17 (G-Gly) were specifically bound to the cells, suggesting the presence of binding proteins other than CCK1-R and CCK2-R on IEC cells. High-affinity ( Kd= 0.5–1.0 nM) binding sites for125I-rhPG were discovered on IEC cells that demonstrated relative binding affinity for gastrin-like peptides in the order PG ≥ COOH-terminally extended G17 ≥ G-Gly > G17 > *CCK-8 (* significant difference; P< 0.05). In conclusion, our studies demonstrate for the first time direct growth effects of the full-length precursor peptide on IEC cells in vitro that are apparently mediated by the high-affinity PG binding sites that were discovered on these cells.


2015 ◽  
Vol 197 (11) ◽  
pp. 1886-1892 ◽  
Author(s):  
Jennifer Tsang ◽  
Takanori Hirano ◽  
Timothy R. Hoover ◽  
Jonathan L. McMurry

ABSTRACTFlagellar biogenesis is a complex process that involves multiple checkpoints to coordinate transcription of flagellar genes with the assembly of the flagellum. InHelicobacter pylori, transcription of the genes needed in the middle stage of flagellar biogenesis is governed by RpoN and the two-component system consisting of the histidine kinase FlgS and response regulator FlgR. In response to an unknown signal, FlgS autophosphorylates and transfers the phosphate to FlgR, initiating transcription from RpoN-dependent promoters. In the present study, export apparatus protein FlhA was examined as a potential signal protein. Deletion of its N-terminal cytoplasmic sequence dramatically decreased expression of two RpoN-dependent genes,flaBandflgE. Optical biosensing demonstrated a high-affinity interaction between FlgS and a peptide consisting of residues 1 to 25 of FlhA (FlhANT). TheKD(equilibrium dissociation constant) was 21 nM and was characterized by fast-on (kon= 2.9 × 104M−1s−1) and slow-off (koff= 6.2 × 10−4s−1) kinetics. FlgS did not bind peptides consisting of smaller fragments of the FlhANTsequence. Analysis of binding to purified fragments of FlgS demonstrated that the C-terminal portion of the protein containing the kinase domain binds FlhANT. FlhANTbinding did not stimulate FlgS autophosphorylationin vitro, suggesting that FlhA facilitates interactions between FlgS and other structures required to stimulate autophosphorylation.IMPORTANCEThe high-affinity binding of FlgS to FlhA characterized in this study points to an additional role for FlhA in flagellar assembly. Beyond its necessity for type III secretion, the N-terminal cytoplasmic sequence of FlhA is required for RpoN-dependent gene expression via interaction with the C-terminal kinase domain of FlgS.


2012 ◽  
Vol 449 (2) ◽  
pp. 333-341 ◽  
Author(s):  
Chiara Saggioro ◽  
Anne Olliver ◽  
Bianca Sclavi

The DnaA protein is a key factor for the regulation of the timing and synchrony of initiation of bacterial DNA replication. The transcription of the dnaA gene in Escherichia coli is regulated by two promoters, dnaAP1 and dnaAP2. The region between these two promoters contains several DnaA-binding sites that have been shown to play an important role in the negative auto-regulation of dnaA expression. The results obtained in the present study using an in vitro and in vivo quantitative analysis of the effect of mutations to the high-affinity DnaA sites reveal an additional effect of positive autoregulation. We investigated the role of transcription autoregulation in the change of dnaA expression as a function of temperature. While negative auto-regulation is lost at dnaAP1, the effects of both positive and negative autoregulation are maintained at the dnaAP2 promoter upon lowering the growth temperature. These observations can be explained by the results obtained in vitro showing a difference in the temperature-dependence of DnaA–ATP binding to its high- and low-affinity sites, resulting in a decrease in DnaA–ATP oligomerization at lower temperatures. The results of the present study underline the importance of the role for autoregulation of gene expression in the cellular adaptation to different growth temperatures.


1991 ◽  
Vol 11 (7) ◽  
pp. 3642-3651 ◽  
Author(s):  
C Devlin ◽  
K Tice-Baldwin ◽  
D Shore ◽  
K T Arndt

The major in vitro binding activity to the Saccharomyces cerevisiae HIS4 promoter is due to the RAP1 protein. In the absence of GCN4, BAS1, and BAS2, the RAP1 protein binds to the HIS4 promoter in vivo but cannot efficiently stimulate HIS4 transcription. RAP1, which binds adjacently to BAS2 on the HIS4 promoter, is required for BAS1/BAS2-dependent activation of HIS4 basal-level transcription. In addition, the RAP1-binding site overlaps with the single high-affinity HIS4 GCN4-binding site. Even though RAP1 and GCN4 bind competitively in vitro, RAP1 is required in vivo for (i) the normal steady-state levels of GCN4-dependent HIS4 transcription under nonstarvation conditions and (ii) the rapid increase in GCN4-dependent steady-state HIS4 mRNA levels following amino acid starvation. The presence of the RAP1-binding site in the HIS4 promoter causes a dramatic increase in the micrococcal nuclease sensitivity of two adjacent regions within HIS4 chromatin: one region contains the high-affinity GCN4-binding site, and the other region contains the BAS1- and BAS2-binding sites. These results suggest that RAP1 functions at HIS4 by increasing the accessibility of GCN4, BAS1, and BAS2 to their respective binding sites when these sites are present within chromatin.


1977 ◽  
Author(s):  
K. Subbarao ◽  
B. Rucinski ◽  
A. Summers ◽  
S. Niewiarowski

The interactions of dipyridamole with α1-acid glycoprotein of plasma and with human platelets are related to inhibition of adenosine uptake by platelets. One mole of dipyridamole binds to one mole of α1-acid glycoprotein with a dissociation constant (Kd) of 1.3 μM. It was found that platelets contain both high and low affinity binding sites for the drug. The binding of dipyridamole to the high affinity sites follows a Michaelis Menten binding pattern with a Kd of 0.04 μM. Approximately 2x104 dipyridamole molecules are bound at the high affinity sites of each platelet. The lower affinity sites bind the drug with a Kd of 4 μM. In the presence of α1acid glycoprotein the binding of dipyridamole to platelets is inhibited. Correspondingly, the dipyridamole inhibition of adenosine uptake by platelets is reduced 1000-fold by α1acid glycoprotein. Binding of dipyridamole to human platelets is essential for its inhibition of adenosine uptake by platelets. Dipyridamole reduced the [14C]-ATP to [14C]-ADP ratio in the platelets. Purified α1acid glycoprotein reversed these effects of dipyridamole on adenosine metabolism of platelets in a concentration dependent manner. A correlationwas observed between the level of circulating dipyridamole in plasma and the inhibition of [14C]-adenosine uptake by platelets of PRP samples of 12 human volunteers given different amounts of dipyridamole. The in vitro and ex vivo effects of dipyridamole on the [14C]-adenosine uptake by platelets were found to be identical. Our data suggest the presence of dipyridamole binding sites in platelets that regulate adenosine transport across the cell surface.


1988 ◽  
Vol 57 (2) ◽  
pp. 77-83 ◽  
Author(s):  
R. Andreesen ◽  
R. G. Sephton ◽  
S. Gadd ◽  
R. C. Atkins ◽  
S. Abrew

Sign in / Sign up

Export Citation Format

Share Document