Virtual image navigation: a new method to control intraoperative bleeding in neuroendoscopic surgery

2000 ◽  
Vol 93 (2) ◽  
pp. 342-350 ◽  
Author(s):  
Martin Scholz ◽  
Britta Fricke ◽  
Stephan Tombrock ◽  
Markus Hardenack ◽  
Kirsten Schmieder ◽  
...  

✓ In this neuroendoscopic study the authors tested the newly developed “red-out module” of their visual navigation system that enables the neurosurgeon to achieve hemostasis if total visualization is lost due to hemorrhage (“red out”) within the visual field. An optical position measurement system connected to the endoscope guarantees that digitized endoscopic images are coupled with the accurate endoscopic position. Computerized images are simultaneously stored with their respective position data, and this creates a virtual anatomical landscape. The system was tested in in vivo bleeding conditions in a rat model. Artificial endoscopic cavities were created in the inguinal, pelvic, and jugular regions in rats to imitate the conditions of the human ventricular system.Two experimental settings were tested: Technique I, in which a computer landmark has been previously determined at the point where the vessel will be lesioned; and Technique II, in which a landmark has been previously set in the surrounding area of the vessel. Immediately after hemorrhage obscures the visual field (red out), the computer automatically displays the virtual images on a separate monitor. The previously set landmarks and the graphic overlay of the coagulation fiber enable the surgeon to navigate within the operative field based on the virtual images and to perform coagulation at the site of the lesion. A total of 175 vessels were coagulated: 43 arteries and 132 veins. In using Technique I, 130 (90.9%) of 143 vessels and in using Technique II, 26 (81.2%) of 32 arteries were successfully coagulated. The authors' data revealed that virtual image guidance has the potential to be a helpful tool in neuroendoscopy.

2002 ◽  
Vol 97 (1) ◽  
pp. 169-176 ◽  
Author(s):  
Sophie de Boüard ◽  
Christo Christov ◽  
Jean-Sébastien Guillamo ◽  
Lina Kassar-Duchossoy ◽  
Stéphane Palfi ◽  
...  

Object. The reliable assessment of the invasiveness of gliomas in vitro has proved elusive, because most invasion assays inadequately model in vivo invasion in its complexity. Recently, organotypical brain cultures were successfully used in short-term invasion studies on glioma cell lines. In this paper the authors report that the invasiveness of human glioma biopsy specimens directly implanted into rodent brain slices by using the intraslice implantation system (ISIS) can be quantified with precision. The model was first validated by the demonstration that, in long-term studies, established glioma cells survive in the ISIS and follow pathways of invasion similar to those in vivo. Methods. Brain slices (400 µm thick) from newborn mice were maintained on millicell membranes for 15 days. Cells from two human and one rodent glioblastoma multiforme (GBM) cell lines injected into the ISIS were detected by immunohistochemistry or after transfection with green fluorescent protein—containing vectors. Preferential migration along blood vessels was identified using confocal and fluorescent microscopy. Freshly isolated (≤ 24 hours after removal) 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate—prelabeled human glioma biopsy specimens were successfully implanted in 19 (83%) of 23 cases, including 12 GBMs and seven lower grade gliomas (LGGs). Morphometric quantification of distance and density of tumor cell invasion showed that the GBMs were two to four times more invasive than the LGGs. Heterogeneity of invasion was also observed among GBMs and LGGs. Directly implanted glioma fragments were more invasive than spheroids derived from the same biopsy specimen. Conclusions. The ISIS combines a high success rate, technical simplicity, and detailed quantitative measurements and may, therefore, be used to study the invasiveness of biopsy specimens of gliomas of different grades.


2002 ◽  
Vol 97 (5) ◽  
pp. 1184-1190 ◽  
Author(s):  
Ryuya Yamanaka ◽  
Naoki Yajima ◽  
Naoto Tsuchiya ◽  
Junpei Honma ◽  
Ryuichi Tanaka ◽  
...  

Object. Immunogene therapy for malignant gliomas was further investigated in this study to improve its therapeutic efficacy. Methods. Dendritic cells (DCs) were isolated from bone marrow and pulsed with phosphate-buffered saline or Semliki Forest virus (SFV)—mediated 203 glioma complementary (c)DNA with or without systemic administration of interleukin (IL)-12 and IL-18 to treat mice bearing the 203 glioma. To study the immune mechanisms involved in tumor regression, the authors investigated tumor growth of an implanted 203 glioma model in T cell subset—depleted mice and in interferon (IFN) γ—neutralized mice. To examine the protective immunity produced by tumor inoculation, a repeated challenge of 203 glioma cells was given by injecting the cells into the left thighs of surviving mice and the growth of these cells was monitored. The authors demonstrated that the combined administration of SFV-cDNA, IL-12, and IL-18 produced significant antitumor effects against the growth of murine glioma cells in vivo and also can induce specific antitumor immunity. The synergic effects of the combination of SFV-cDNA, IL-12, and IL-18 in vivo were also observed to coincide with markedly augmented IFNγ production. The antitumor effects of this combined therapy are mediated by CD4+ and CD8+ T cells and by NK cells. These results indicate that the use of IL-18 and IL-12 in DC-based immunotherapy for malignant glioma is beneficial. Conclusions. Immunogene therapy combined with DC therapy, IL-12, and IL-18 may be an excellent candidate in the development of a new treatment protocol. The self-replicating SFV system may therefore provide a novel approach for the treatment of malignant gliomas.


1994 ◽  
Vol 80 (3) ◽  
pp. 527-534 ◽  
Author(s):  
Yasuhiro Matsuda ◽  
Keiichi Kawamoto ◽  
Katsuzo Kiya ◽  
Kaoru Kurisu ◽  
Kazuhiko Sugiyama ◽  
...  

✓ The presence of the progesterone receptor (PR) in meningioma tissue has been confirmed by previous investigations. Studies have shown that the antiprogesterone drug, mifepristone, is a potent agent that inhibits the growth of cultured meningioma cells and reduces the size of meningiomas in experimental animal models and humans. However, these studies have not fully examined the relationship between the antitumor effects of an antiprogesterone agent and the expression of the PR. The present study examined the antitumor effects of mifepristone and a new potent antiprogesterone agent, onapristone; a correlation between the antitumor effects of these antiprogesterones and the presence of PR's in meningiomas in vitro and in vivo was also investigated. Meningioma tissue surgically removed from 13 patients was used in this study. In the in vitro arm of the study, mifepristone and onapristone exhibited cytostatic and cytocidal effects against cultured meningioma cells, regardless of the presence or absence of PR's; however, three PR-negative meningiomas showed no response to any dose of mifepristone and/or onapristone. In the in vivo arm, meningioma cells, embedded in a collagen gel, were implanted into the renal capsules of nude mice. Antiprogesterone treatment resulted in a marked reduction of the tumor volume regardless of the presence or absence of PR's. No histological changes in the meningioma cells suggestive of necrosis or apoptosis were detected in any of the mice treated with antiprogesterones. These findings suggest that mifepristone and onapristone have an antitumor effect against meningioma cells via the PR's and/or another receptor, such as the glucocorticoid receptor.


1974 ◽  
Vol 40 (4) ◽  
pp. 451-458 ◽  
Author(s):  
George S. Allen ◽  
Lawrence H. A. Gold ◽  
Shelley N. Chou ◽  
Lyle A. French

✓ In vivo experiments in dogs demonstrated that physiological concentrations of serotonin, when injected intracisternally, caused cerebral arterial spasm that lasted for at least 3 hours. Comparable spasm was produced by the injection of blood containing approximately the same amount of serotonin. Phenoxybenzamine reversed both the spasm produced by pure serotonin and that produced by blood. A hypothesis of the etiology of cerebral arterial spasm is proposed based on the experimental results of the entire study.


1993 ◽  
Vol 78 (6) ◽  
pp. 979-982 ◽  
Author(s):  
William Y. Lu ◽  
Marc Goldman ◽  
Byron Young ◽  
Daron G. Davis

✓ Gangliogliomas of the optic nerve are extremely rare. The case is reported of a 38-year-old man who presented with a visual field deficit and was discovered to have an optic nerve ganglioglioma. The possible embryological origins of this neoplasm, its histological and immunohistochemical features, and its appearance on magnetic resonance imaging are examined. The prognoses of optic nerve glioma and of gangliogliomas occurring elsewhere in the nervous system are compared.


2000 ◽  
Vol 92 (2) ◽  
pp. 249-254 ◽  
Author(s):  
Roger J. Packer ◽  
Cory Raffel ◽  
Judith G. Villablanca ◽  
Jörg-Christian Tonn ◽  
Stefan E. Burdach ◽  
...  

Object. The outcome for children with recurrent malignant brain tumors is poor. The majority of patients die of progressive disease within months of relapse, and other therapeutic options are needed. The goal of this Phase I study was to evaluate the safety of in vivo suicide gene therapy in 12 children with recurrent, malignant, supratentorial brain tumors.Methods. After optimal repeated tumor resection, multiple injections of murine vector—producing cells shedding murine replication—defective retroviral vectors coding the herpes simplex virus thymidine kinase type 1 (HSV-Tk1) gene were made into the rim of the resection cavity. Fourteen days after the vector-producing cells were injected, ganciclovir was administered for 14 days. The retroviral vector that was used only integrated and expressed HSV-Tk1 in proliferating cells, which are killed after a series of metabolic events lead to cell death. The median age of the patients was 11 years (range 2–15 years). Treated brain tumors included seven malignant gliomas, two ependymomas, and three primitive neuroectodermal tumors. The patients were treated with one of three escalating dose concentrations of vector-producer cells. Four transient central nervous system adverse effects were considered possibly related to the vector-producing cells. In no child did permanent neurological worsening or ventricular irritation develop, and tests for replication-competent retroviruses yielded negative findings.Conclusions. This Phase I study demonstrates that in vivo gene therapy in which a replication-defective retroviral vector in murine vector—producing cells is delivered by brain injections can be performed with satisfactory safety in a select group of children with localized supratentorial brain tumors.


2003 ◽  
Vol 98 (3) ◽  
pp. 561-564 ◽  
Author(s):  
Yoshifumi Kawanabe ◽  
Tomoh Masaki ◽  
Nobuo Hashimoto

Object. The Ca++ influx into vascular smooth-muscle cells (VSMCs) plays a fundamental role in the development and chronic effects of vasospasm after subarachnoid hemorrhage (SAH). The Ca++-permeable nonselective cation channels (NSCCs) are activated by several endothelium-derived constricting factors such as endothelin 1 (ET-1) and thromboxane A2. Moreover, the receptor-operated Ca++ channel blocker LOE 908 inhibits ET-1—induced extracellular Ca++ influx via NSCCs in the VSMCs of the basilar artery (BA) and the NSCC-dependent part of ET-1—induced vasoconstriction of BA rings. The purpose of the present study was to evaluate the in vivo role of LOE 908 on SAH-induced vasospasm. Methods. Forty-two Japanese white rabbits were assigned to seven groups. Treatment groups consisted of the following: 1) control rabbits without SAH that received a cisternal injection of saline; 2) rabbits with SAH that were subjected to the intravenous administration of saline; 3 through 6) rabbits with SAH that underwent the intravenous administration of 0.01, 0.1, 1, or 10 mg/kg LOE 908, respectively; and 7) rabbits without SAH that underwent the intravenous administration of 10 mg/kg LOE 908. Autologous blood was injected into the cisterna magna. The caliber of the BA was measured on angiographic studies before and after the cisternal injection of autologous blood. The intravenous injection of LOE 908 inhibited the magnitude of an SAH-induced vasosapsm. In addition, the concentration of LOE 908 required to relax vasospasm (1 mg/kg) correlated with that required to block Ca++ influx into VSMCs. Conclusions. The Ca++ channel blocker LOE 908 may inhibit the magnitude of an SAH-induced vasospasm by blocking the influx of Ca++ through NSCCs in rabbit BAs. Blocking the NSCCs may represent a new treatment for cerebral vasospasm after SAH.


1992 ◽  
Vol 76 (1) ◽  
pp. 106-110 ◽  
Author(s):  
Kenneth P. Madden ◽  
Wayne M. Clark ◽  
Abha Kochhar ◽  
Justin A. Zivin

✓ Antagonists of excitatory amino acids appear to serve a neuroprotective role during ischemic conditions in a variety of in vivo and in vitro models. The usefulness of such agents in the clinical setting, however, may be limited by poor central nervous system (CNS) entry and intolerable side effects. The authors report high efficacy in reducing neurological damage and relatively limited side effects of LY233053, a novel competitive glutamate antagonist, in two models of experimental CNS ischemia in the rabbit.


2005 ◽  
Vol 102 (1) ◽  
pp. 90-97 ◽  
Author(s):  
David Croteau ◽  
Stuart Walbridge ◽  
Paul F. Morrison ◽  
John A. Butman ◽  
Alexander O. Vortmeyer ◽  
...  

Object. Convection-enhanced delivery (CED) is increasingly used to distribute therapeutic agents to locations in the central nervous system. The optimal application of convective distribution of various agents requires the development of imaging tracers to monitor CED in vivo in real time. The authors examined the safety and utility of an iodine-based low-molecular-weight surrogate tracer for computerized tomography (CT) scanning during CED. Methods. Various volumes (total volume range 90–150 µ1) of iopamidol (MW 777 D) were delivered to the cerebral white matter of four primates (Macaca mulatta) by using CED. The distribution of this imaging tracer was determined by in vivo real-time and postinfusion CT scanning (≤ 5 days after infusion [one animal]) as well as by quantitative autoradiography (14C-sucrose [all animals] and 14C-dextran [one animal]), and compared with a mathematical model. Clinical observation (≤ 5 months) and histopathological analyses were used to evaluate the safety and toxicity of the tracer delivery. Real-time CT scanning of the tracer during infusion revealed a clearly definable region of perfusion. The volume of distribution (Vd) increased linearly (r2 = 0.97) with an increasing volume of infusion (Vi). The overall Vd/Vi ratio was 4.1 ± 0.7 (mean ± standard deviation) and the distribution of infusate was homogeneous. Quantitative autoradiography confirmed the accuracy of the imaged distribution for a small (sucrose, MW 359 D) and a large (dextran, MW 70 kD) molecule. The distribution of the infusate was identifiable up to 72 hours after infusion. There was no clinical or histopathological evidence of toxicity in any animal. Conclusions. Real-time in vivo CT scanning of CED of iopamidol appears to be safe, feasible, and suitable for monitoring convective delivery of drugs with certain features and low infusion volumes.


1981 ◽  
Vol 54 (3) ◽  
pp. 357-365 ◽  
Author(s):  
Tomio Sasaki ◽  
Susumu Wakai ◽  
Takao Asano ◽  
Takashi Watanabe ◽  
Takaaki Kirino ◽  
...  

✓ The in vivo spasmogenic capacity of a lipid hydroperoxide (15-hydroperoxy arachidonic acid: 15-HPAA) was studied in a chronic experiment using the dog. The 15-HPAA was injected into the cisterna magna (0.2 or 2 mg emulsified in bovine serum albumin solution). The changes in diameter of the basilar artery were followed by angiography, and the morphological changes were studied by electron microscopy. The cisternal injection of 0.2 mg of 15-HPAA caused a mild constriction of the basilar artery which lasted about 7 hours. The cisternal injection of 2 mg of 15-HPAA caused a biphasic constriction, the initial phase of which was a moderate narrowing lasting about 10 hours. The second phase started on the 2nd or the 3rd day after injection. The intensity of the arterial narrowing was more pronounced in the second phase than in the first. The prolonged secondary constriction of the basilar artery continued until sacrifice on the 7th day after injection. Electron microscopic study revealed a marked degenerative change in the endothelium and myonecrotic changes in the tunica media. The prolonged arterial constriction in the second phase was invariably associated with remarkable degeneration of the endothelium. On the other hand, myonecrotic changes were limited to a small number of smooth-muscle cells. The results of the present study are consonant with the hypothesis that lipid peroxidation associated with lysis of the subarachnoid clot is involved in the genesis of chronic vasospasm in subarachnoid hemorrhage.


Sign in / Sign up

Export Citation Format

Share Document