scholarly journals Hydraulic modeling and computational fluid dynamics of bone burial in a sandy river channel

2020 ◽  
Vol 7 ◽  
pp. 97-120
Author(s):  
Kenneth Carpenter

An oval recycling flume with live-beds (moveable) of medium and very coarse grained sands were used to explore the process of bone burial as a precursor to fossilization. Two-dimentional computation fluid dynamics was used to visualize and interpret the flow turbulence around bones. Results show that a water mass approaching and passing a static bone (obstruction) is subjected to flow modification by flow separation, flow constriction, and flow acceleration producing complex flow patterns (turbulence). These complex patterns include an upstream high-pressure zone, down flows, and vortices (with flow reversal near the bed) causing bed shear stress that produce bed erosion. Downstream of the bone, the water mass undergoes flow deceleration, water recirculation (turbulence eddies), flow reattachment, low-pressure zone (drag), and sediment deposition. Scour plays a crucial role by undercutting bone on the upstream side and may cause the bone to settle into the bed by rotation or sliding. Scour geometry is determined by bone size and shape, approaching flow velocity and angle to flow, flow depth, bed topography, and bed friction. Drag on the downstream side of the bone causes scoured sediment deposition, but burial by migrating bed forms is the most important method of large bone burial. Bone may be repeatedly buried and exposed with renewed scour. However, each episode of scour may lower the bone deeper into the bed so that it essentially buries itself. No difference in these effects were noted between experiments using fine or coarse grain sizes. This experimental work is then used to interpret the possible history of bone burial in the Upper Jurassic Morrison Formation on the bone wall inside the Quarry Exhibit Hall at Dinosaur National Monument, Utah.

2015 ◽  
Vol 137 (9) ◽  
Author(s):  
Prasanna Hariharan ◽  
Gavin D’Souza ◽  
Marc Horner ◽  
Richard A. Malinauskas ◽  
Matthew R. Myers

As part of an ongoing effort to develop verification and validation (V&V) standards for using computational fluid dynamics (CFD) in the evaluation of medical devices, we have developed idealized flow-based verification benchmarks to assess the implementation of commonly cited power-law based hemolysis models in CFD. The verification process ensures that all governing equations are solved correctly and the model is free of user and numerical errors. To perform verification for power-law based hemolysis modeling, analytical solutions for the Eulerian power-law blood damage model (which estimates hemolysis index (HI) as a function of shear stress and exposure time) were obtained for Couette and inclined Couette flow models, and for Newtonian and non-Newtonian pipe flow models. Subsequently, CFD simulations of fluid flow and HI were performed using Eulerian and three different Lagrangian-based hemolysis models and compared with the analytical solutions. For all the geometries, the blood damage results from the Eulerian-based CFD simulations matched the Eulerian analytical solutions within ∼1%, which indicates successful implementation of the Eulerian hemolysis model. Agreement between the Lagrangian and Eulerian models depended upon the choice of the hemolysis power-law constants. For the commonly used values of power-law constants (α  = 1.9–2.42 and β  = 0.65–0.80), in the absence of flow acceleration, most of the Lagrangian models matched the Eulerian results within 5%. In the presence of flow acceleration (inclined Couette flow), moderate differences (∼10%) were observed between the Lagrangian and Eulerian models. This difference increased to greater than 100% as the beta exponent decreased. These simplified flow problems can be used as standard benchmarks for verifying the implementation of blood damage predictive models in commercial and open-source CFD codes. The current study used only a power-law model as an illustrative example to emphasize the need for model verification. Similar verification problems could be developed for other types of hemolysis models (such as strain-based and energy dissipation-based methods). And since the current study did not include experimental validation, the results from the verified models do not guarantee accurate hemolysis predictions. This verification step must be followed by experimental validation before the hemolysis models can be used for actual device safety evaluations.


Micromachines ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1122
Author(s):  
Chih-Yang Wu ◽  
Bing-Hao Lai

To enhance fluid mixing, a new approach for inlet flow modification by adding vortex-inducing obstacles (VIOs) in the inlet channels of a T-shaped micromixer is proposed and investigated in this work. We use a commercial computational fluid dynamics code to calculate the pressure and the velocity vectors and, to reduce the numerical diffusion in high-Peclet-number flows, we employ the particle-tracking simulation with an approximation diffusion model to calculate the concentration distribution in the micromixers. The effects of geometric parameters, including the distance between the obstacles and the angle of attack of the obstacles, on the mixing performance of micromixers are studied. From the results, we can observe the following trends: (i) the stretched contact surface between different fluids caused by antisymmetric VIOs happens for the cases with the Reynolds number (Re) greater than or equal to 27 and the enhancement of mixing increases with the increase of Reynolds number gradually, and (ii) the onset of the engulfment flow happens at Re≈125 in the T-shaped mixer with symmetric VIOs or at Re≈140 in the standard planar T-shaped mixer and results in a sudden increase of the degree of mixing. The results indicate that the early initiation of transversal convection by either symmetric or antisymmetric VIOs can enhance fluid mixing at a relatively lower Re.


Fluids ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 40 ◽  
Author(s):  
Andrei Medved ◽  
Riley Davis ◽  
Paula A. Vasquez

The Langevin equations (LE) and the Fokker–Planck (FP) equations are widely used to describe fluid behavior based on coarse-grained approximations of microstructure evolution. In this manuscript, we describe the relation between LE and FP as related to particle motion within a fluid. The manuscript introduces undergraduate students to two LEs, their corresponding FP equations, and their solutions and physical interpretation.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Stephen A. Huyer ◽  
Amanda Dropkin

This paper presents a computational study to better understand the underlying fluid dynamics associated with various duct shapes and the resultant impact on both total vehicle drag and propulsor efficiency. A post-swirl propulsor configuration (downstream stator blade row) was selected with rotor and stator blade number kept constant. A generic undersea vehicle hull shape was chosen and the maximum shroud radius was required to lie within this body radius. A cylindrical rim-driven electric motor capable of generating a specific horsepower to achieve the design operational velocity required a set volume that established a design constraint limiting the shape of the duct. Individual duct shapes were designed to produce constant flow acceleration from upstream of the rotor blade row to downstream of the stator blade row. Ducts producing accelerating and decelerating flow were systematically examined. The axisymmetric Reynolds Averaged Navier–Stokes (RANS) version of fluent® was used to study the fluid dynamics associated with a range of accelerated and decelerated duct flow cases as well as provide the base total vehicle drag. For each given duct shape, the propeller blade design code, PBD 14.3, was used to generate an optimized rotor and stator. To provide fair comparisons, the maximum rotor radius was held constant with similar circulation distributions intended to generate equivalent amounts of thrust. Computations predicted that minimum vehicle drag was produced with a duct that produced zero mean flow acceleration. Ducted designs generating accelerating or decelerating flow increased drag. However, propulsive efficiency based exclusively on blade thrust and torque was significantly increased for accelerating flow through the duct and reduced for decelerating flow cases. Full 3D RANS flow simulations were then conducted for select test cases to quantify the specific blade, hull, and shroud forces and highlight the increased component drag produced by an operational propulsor, which reduced overall propulsive efficiency. From these results, a final optimized design was proposed.


Author(s):  
Yaming Fan ◽  
Jingliang Dong ◽  
Lin Tian ◽  
Kiao Inthavong ◽  
Jiyuan Tu

This paper presents a computational and experimental study of steady inhalation in a realistic human pharyngeal airway model. To investigate the intricate fluid dynamics inside the pharyngeal airway, the numerical predicted flow patterns are compared with in vitro measurements using Particle Image Velocimetry (PIV) approach. A structured mesh with 1.4 million cells is used with a laminar constant flow rate of 10 L/min. PIV measurements are taken in three sagittal planes which showed flow acceleration after the pharynx bend with high velocities in the posterior pharyngeal wall. Computed velocity profiles are compared with the measurements which showed generally good agreements with over-predicted velocity distributions on the anterior wall side. Secondary flow patterns on cross-sectional slices in the transverse plane revealed vortices posterior of pharynx and a pair of secondary flow vortexes due to the abrupt cross-sectional area increase. Finally, pressure and flow resistance analysis demonstrate that greatest pressure occurs in the superior half of the airway and maximum in-plane pressure variation is observed at the velo-oropharynx junction, which expects to induce a high tendency of airway collapse during inhalation. This study provides insights of the complex fluid dynamics in human pharyngeal airway and can contribute to a reliable approach to assess the probability of flow-induced airway collapse and improve the treatment of obstructive sleep apnea.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012155
Author(s):  
V D Meshkova ◽  
A A Dekterev

Abstract The paper presents a comprehensive analysis of the wind flow interaction with a high-rise building, considering various types of streamlined flow acceleration, as well as an assessment of the aerodynamic shadow behind the building, and areas with increased wind speeds. The authors analyze risks caused by these zones, as well as suggest measures to minimize them.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 959
Author(s):  
Mohammad E. Mohammad ◽  
Nadhir Al-Ansari ◽  
Sven Knutsson ◽  
Jan Laue

Siltation is one of the most common problems in storage projects and attached structures around the world, due to its effects on a project’s life span and operational efficiency. A three-dimensional computational fluid dynamics (CFD) model was applied to study the flow and sediment deposition in a multipurpose reservoir (Mosul Dam Reservoir, Iraq) subject to water withdrawal via a pumping station. A suitable control code was developed for the sediment simulation in intakes with multiblock option (SSIIM) model, in order to simulate a study case and achieve the study aims. The measured total deposited load in the reservoir after 25 years of operation and the measured sediment load concentration at different points near the pumping station intake were considered to validate the model results. The sediment load concentrations at several points near the water intake were compared; the percent bias (PBIAS) value was 3.6%, while the t-test value was 0.43, less than the tabulated value, indicating fair model performance. The model sensitivity to grid size and time steps was also tested. Four selected bed level sections along the reservoir were compared with the simulated values and indicate good performance of the model in predicting the sediment load deposition. The PBIAS ranged between 4.8% and 80.7%, and the paired t-test values indicate good model performance for most of the sections.


2006 ◽  
Vol 31 (6) ◽  
pp. 736-749 ◽  
Author(s):  
Shaun K. Carney ◽  
Brian P. Bledsoe ◽  
Daniel Gessler

Sign in / Sign up

Export Citation Format

Share Document