scholarly journals Interpolation of Boundary Condition at Time-Interval of Unknown Lenghth for the Problem of Convective Diffusion in a Three-Layered Water Filter

Author(s):  
Olha Chernukha ◽  
Yurii Bilushchak

On the basis of mathematical model of convectivediffusion in a three-layered filter it is formulated a contactinitial-boundary value problem for description of mass transferof pollution accompanying the sorption processes. It is proposedthe algorithm for establishing the estimation of values of soughtfunction (concentration of pollution) at the lower boundary of thefilter on the basis of the interpolation of experimental data. It istaken into account that the right end of the interpolation segmentis unknown. It is determined the exact solutions of contact-initialboundaryvalue problems of mass transfer with provision forboth diffusive and convective mechanisms of transfer as well assorption processes, which is based on integral transformationsover space variables in the contacting regions. Is it designedsoftware and established regularities of convective diffusionprocess in the three-layered filter.

2012 ◽  
Vol 32 (2) ◽  
pp. 342-353 ◽  
Author(s):  
Cleide M. D. P. da S. e Silva ◽  
Wilton P. da Silva ◽  
Vera S. de O. Farias ◽  
Josivanda P. Gomes

In this article, a methodology is used for the simultaneous determination of the effective diffusivity and the convective mass transfer coefficient in porous solids, which can be considered as an infinite cylinder during drying. Two models are used for optimization and drying simulation: model 1 (constant volume and diffusivity, with equilibrium boundary condition), and model 2 (constant volume and diffusivity with convective boundary condition). Optimization algorithms based on the inverse method were coupled to the analytical solutions, and these solutions can be adjusted to experimental data of the drying kinetics. An application of optimization methodology was made to describe the drying kinetics of whole bananas, using experimental data available in the literature. The statistical indicators enable to affirm that the solution of diffusion equation with convective boundary condition generates results superior than those with the equilibrium boundary condition.


Author(s):  
Anatolii Vlasyuk ◽  
Viktor Ogiychuk

The nonlinear mathematical model of a process micro irrigation in non-saturated of soil layer under of heat and mass transfer has presented. The numerical solution of the espective boundary value problem has obtained by the method of finite differences using the monotonic scheme. Software had created on the basic of developed algorithms and a series of numerical experiments were done.


1974 ◽  
Vol 14 (04) ◽  
pp. 385-395 ◽  
Author(s):  
L.D. Roberts

Abstract A mathematical model is developed that yields the distance to which live aid may penetrate into a fracture under conditions in which the over-all reaction kinetics. The model is solved by an explicit finite-difference method, and the results are presented in graphical form. An example design presented in graphical form. An example design calculation is given for HC1 reaction in a dolomite fracture. Experimental data are presented for acid flow in limestone and dolomite laboratory - prepared fracture systems 4.1 t 9.7 ft long, at 71, 190, and 290F. From these experiments was determined a parameter appearing in the mathematical model-termed the effective mixing coefficient. The mixing coefficient has a minimum in the low Reynolds number region, indicating that rectilinear laminar flow is approached more closely just before the flow becomes turbulent. The mixing coefficient also appears to be dependent upon temperature in the laminar flow region. The mathematical solutions given in this paper are applicable to situations in which the over-all rate of acid reaction is not determined solely by mass transfer. Introduction Acids are widely used in the hydraulic fracturing of reservoirs to stimulate wells. Roughly speaking, the purpose of the acid is to selectively react with and dissolve portions of the fracture wall so that a finite fluid conductivity remains when the well is returned to production. One important variable that must be known in designing these acid fracturing treatments is the distance to which acid will penetrate the fracture before completely reacting penetrate the fracture before completely reacting and becoming spent. This distance is usually termed the acid penetration length and is an essential part of the information needed for predicting productivity after acidizing. Other important design variables include the dynamic fracture geometry and the residual fracture conductivity. Because of its importance in predicting stimulation ratios, acid penetration into a fracture has been studied by several investigators. Both static tests and dynamic tests have been used to predict acid reaction rates in fractures. It seems predict acid reaction rates in fractures. It seems reasonable that a dynamic acid reactor test will be useful for predicting acid spending rates, since the mass transfer rate in an actual fracture may be approached in this type of test. One experimental apparatus used for acid flow tests in parallel plate system such as that used by Barron et al. plate system such as that used by Barron et al. and by Williams and Nierode. In these tests, acid is pumped at a known flow rate through a fracture of known geometry and the inlet and outlet acid composition is measured. From the resulting information it is possible to predict acid penetration in a real fracture with the aid of a mathematical model having experimentally determined parameters. We present here the results of an investigation of the use of mathematical model for predicting acid spending a fracture. Using Williams and Nierode's approach to calculating acid penetration, we have extended their method to allow for the fact that the surface reaction rates of several acid-rock systems (e.g., HC1-dolomite) may be finite compared with the rate of mass transfer to the surface. Experimental data are presented for determining the parameters appearing in the mathematical model and a sample calculation illustrates its use. MATHEMATICAL MODEL FOR ACID FRACTURING The mathematical model presented here is a modification of that introduced by Williams and Nierode to allow for the occurrence of finite reaction rates. This modification makes it possible to calculate theoretical penetration distances for acid featuring when reaction kinetics are important as in the case of the HC1-dolomite reaction. Since an analytical solution of the model is not possible, a finite-difference method was developed and is presented in Appendix A. presented in Appendix A. The model for acid formula is fracturing is presented in Fig. 1. Here the acid leakoff velocity, presented in Fig. 1. Here the acid leakoff velocity, is assumed constant over the fracture length. SPEJ p. 385


2021 ◽  
Vol 939 (1) ◽  
pp. 012052
Author(s):  
A Z Mamatov ◽  
A K Usmankulov ◽  
I Z Abbazov ◽  
U A Norboyev ◽  
E T Mukhametshina

Abstract This article solves one parabolic-type boundary value problem for determining the heat-moisture state of raw cotton in drum dryers at a constant air temperature. Numerical results are obtained by the Bubnov – Galerkin method of the problem under consideration, a comparative analysis is carried out with experimental data. It is shown that the proposed mathematical model and its numerical algorithm adequately describe the drying process of raw cotton.


SPE Journal ◽  
2011 ◽  
Vol 16 (04) ◽  
pp. 795-811 ◽  
Author(s):  
A.. Jamili ◽  
G.P.. P. Willhite ◽  
D.W.. W. Green

Summary Gas injection in naturally fractured reservoirs maintains the reservoir pressure and increases oil recovery primarily by gravity drainage and to a lesser extent by mass transfer between the flowing gas in the fracture and the porous matrix. Although gravity drainage has been studied extensively, there has been limited research on mass-transfer mechanisms between the gas flowing in the fracture and fluids in the porous matrix. This paper presents a mathematical model that describes the mass transfer between a gas flowing in a fracture and a matrix block. The model accounts for diffusion and convection mechanisms in both gas and liquid phases in the porous matrix. The injected gas diffuses into the porous matrix through gas and liquid phases, causing the vaporization of oil in the porous matrix, which is transported by convection and diffusion to the gas flowing in the fracture. Compositions of equilibrium phases are computed using the Peng-Robinson EOS. The mathematical model was validated by comparing calculations to two sets of experimental data reported in the literature (Morel et. al. 1990; Le Romancer et. al. 1994), one involving nitrogen (N2) flow in the fracture and the second with carbon dioxide (CO2) flow. The matrix was a chalk. The resident fluid in the porous matrix was a mixture of methane and pentane. In the N2-diffusion experiment, liquid and vapor phases were initially present, while in the CO2 experiment, the matrix was saturated with liquid-hydrocarbon and water phases. Calculated results were compared with the experimental data, including recovery of each component, saturation profiles, and pressure gradient between matrix and fracture. Agreement was generally good. The simulation revealed the presence of countercurrent flow inside the block. Diffusion was the main mass-transfer mechanism between matrix and fracture during N2 injection. In the CO2 experiment, diffusion and convection were both important.


2010 ◽  
Vol 62 (4) ◽  
pp. 906-914 ◽  
Author(s):  
Guillermo Quijano ◽  
Sergio Huerta-Ochoa ◽  
Mariano Gutiérrez-Rojas

A mathematical model was developed to assess limiting step of mass transfer in the n-hexadecane (HXD) biodegradation by a microbial consortium. A double Monod kinetic (oxygen and HXD) for biomass production was successfully used to describe the experimental data. Good fitting (r2 = 0.92) between the model solution and experimental data was obtained. The overall mass transfer coefficients for HXD, kLaHXD, and oxygen, kLaO2, were experimentally determined and biosurfactant production was indirectly determined through surface tension measurements in the aqueous phase. It was observed that a surface tension reduction from 65 (0 h of culture) to 47 mN m−1 (240 h of culture) was related to a decrease of 52% in the HXD droplet diameter and to an increase of 63% in kLaHXD, respect the initial values. Conversely, kLaO2 was repressed up to 37% compared to the initial value. The maximum rate analysis based on the mathematical model showed that HXD transfer was up to 5-fold lower than its consumption. On the contrary, oxygen transfer was always higher than its consumption. Thus, the limiting step under the working conditions was the HXD transfer to the aqueous phase. However, slight reductions in kLaO2 could result in oxygen transfer limitations during the last 60 h of the cultures.


2014 ◽  
Vol 1016 ◽  
pp. 342-346 ◽  
Author(s):  
Paul Campos Santana Silva ◽  
Paulo Henrique Terenzi Seixas ◽  
Caroline Rodrigues ◽  
Leonardo Fonseca ◽  
Rudolf Huebner

AISI 1020 steel bars cooling have been investigated aiming to obtain their cooling rate during heat treatment. Hot steel bars just taken out of the furnace are piled over other ones that were taken out of the furnace earlier. A mathematical model has been created and implemented using the software EES, Engineering Equation Solver. An experiment was conducted to validate the mathematical model. The experiment consists in three loads of three bars each with a time interval of 5 minutes between them. The initial temperature of each bar was 150oC. The mathematical model can obtain the thermal profile of each bar and the average and maximum deviation when confronted with experimental data were about 8% and 20% respectively.


Author(s):  
Ērika Teirumnieka ◽  
Ilmārs Kangro ◽  
Edmunds Teirumnieks ◽  
Harijs Kalis

The mathematical model for calculation of concentration of metals for 3 layers peat blocks is developed due to solving the 3-D boundary-value problem in multilayered domain-averaging and finite difference methods are considered. As an example, mathematical models for calculation of Fe and Ca concentrations have been analyzed.


Author(s):  
Anatolii Vlasyuk ◽  
Tatiana Tsvietkova

The mathematical model of a processes mass transfer in saturated and unsaturated porous media to the filtertrap in isothermal conditions to the system of vertical drains is presented. The numerical solution of the respective boundary value problem was obtained by the method of finite differences using the numerical method of conformal mappings in an inverse statement.


Sign in / Sign up

Export Citation Format

Share Document