scholarly journals Problem issues of cores thermal-hydraulic calculation for prospective water-cooled reactors with supercritical parameters

2020 ◽  
Vol 19 (4) ◽  
pp. 3-15
Author(s):  
І. G. Sharaevsky ◽  
◽  
N. М. Fіаlkо ◽  
А. V. Nоsоvskyi ◽  
L. B. Zimin ◽  
...  

The fundamental thermophysical features of the heat exchange process between the heated wall of a vertical channel and the light-water coolant of supercritical parameters concerning the conditions of heat-generating assemblies channels and cores of perspective energy nuclear reactors are considered. The available methods and recommendations for determining the limits of thermal load are analyzed. It is a guarantee the absence of the characteristic dangerous mode possibility of deteriorated heat exchange in these conditions and corresponding sharp rise in the channels wall temperature, which threatens their destruction. The physical nature of the occurrence of degraded heat transfer regimes remains unclear, and the existing approaches to the implementation of thermohydraulic calculation in such conditions are not sufficiently justified. The complex nature of intercellular heat and mass transfer in the fuel assembly and the presence of individual thermohydraulic cells with reduced levels of heat transfer intensity indicate that the existing method of determining the area of degraded heat transfer in the reactor core channels with supercritical parameters of the coolant is significantly simplified. Insufficient data and research results have been revealed to create adequate methods of heat-hydraulic calculation, suitable for taking into account the peculiarities of the heat transfer process complex flow under conditions of supercritical parameters of the coolant. The application of such methods should be the basis for ensuring the safe operation of prospective reactors and minimizing potential losses of a different nature from accidents caused by the destruction of cores through unacceptable heat transfer modes. To this end, the main direction of further research is identified.

2019 ◽  
Vol 252 ◽  
pp. 05019 ◽  
Author(s):  
Robert Zarzycki ◽  
Justyna Jędras

The study presents the problem of heat exchange in the biomass carbonisation reactor with cyclic operation. Based on the actual parameter of the biomass carbonisation reactor, a geometrical model was developed, and the computation of the heating process was conducted for two cases: an empty reactor and a filled reactor. Its result demonstrated that for the analysed configuration of the reactor, the process of heating biomass in the containers is limited by the capability of heat transfer to the biomass in the container. The results suggest opportunities for the improved heat exchange in the reactor and, accordingly, shortening heating time through installation of the system that forces circulation of hot air inside the reactor.


Author(s):  
Ekaterina Ahtareeva ◽  
Anatoliy Dement'ev ◽  
Evgeniy Podoplelov

The study of the efficiency of the heat transfer process in the air cooling apparatus, which is part of the installation of a sulfuric acid alkylation, at different finning coefficients of heat exchange pipes


2021 ◽  
Vol 2088 (1) ◽  
pp. 012012
Author(s):  
M Yu Egorov ◽  
V D Lychakov ◽  
A A Shcheglov ◽  
A S Matyash

Abstract The results of thermal-hydraulic and strength tests of finned tube assemblies welded from KP 20 elements of four sizes are presented. The elements are representing by steel plate 0.4 mm in thickness, covered with a copper film 0.025 mm in thickness. One or two conical necks 17 mm long are extended in the plates. A set of placed in each other cones form a welded finned tube 23/20 mm with a toothed inner surface. As a result of the tests: high strength characteristics of these assemblies were demonstrated (internal pressure of burst under normal conditions is 40 MPa, resistance to sudden changes in temperature and freezing of water in “pipes”); a high average coefficient of thermal conductivity in the thickness of the ribs was confirmed at the level of 75 W/(m×K); the increase in the intensity of the heat transfer process is 2.15 times with the help of technological protrusions on the inner surface of the “pipe” to a turbulent single-phase flow in comparison with the calculated values for “smooth” pipes with a moderate increase in hydraulic resistance; the method of heat-hydraulic calculation of heat exchangers consisting of such “pipes” is proposed. The method is based on the ratios set out in the regulatory document “RD 24.035.05-89”. Thermal and hydraulic calculation of NPP heat exchanging equipment”, with amendments considering the high degree of finning of the tested “pipes” and the asymmetry of the edges of the ribs relative to the axis of the “pipes” bearing pressure, as well as the change in the value of the correction for the smallness of the tube bundle — we also identified areas of effective use of assemblies tested sizes of elements KP 20.


Author(s):  
B.S. Soroka

Some actual aspects of advancement the problem of improvement the heat exchange equipment are considered in the paper. First of all the actual items related to middle and high temperature recuperators are discussed with proper up-to — date approaches. The classification of flue gases heat recovery appliances has been proposed along with the statement and analysis of the main characteristics of the recovery plants and option the ways of optimization the mentioned characteristics. The problem of Reynolds analogy (similarity of relative change the heat transfer phenomenon and variation the hydraulic resistance) within the channels of different purpose and of various cross-section supplied with and without the obstacles has been analyzed in application to separate cases of flow along the surfaces equipped with the cavities (dimples) or the convex elements. Thermal Performance Factor (TPF) of the heat exchange process is qualitatively like to Reynolds analogy factor and is highly depended upon rate of heat transfer and of friction factor in conditions of the scheme under consideration for flow over the surface or flow within the channel. The various media has been compared used as a working body in the heat exchanger’s channels: gaseous, liquid and the nanofluids, the last appeared in practice since 2000. Analysis has been carried out on effect of using the secondary energy emitters (SEE) arranged inside the tube channels, on resulting heat flux by heat exchange between outward flow of combustion products and the inner air flow. Bibl. 23, Fig. 6.


2005 ◽  
Vol 127 (3) ◽  
pp. 580-588 ◽  
Author(s):  
Luca Casarsa ◽  
Tony Arts

The present study deals with a detailed experimental investigation of the turbulent flow inside a rib-roughened turbine blade cooling channel. The measurements are carried out in a stationary straight channel with high blockage ribs installed on one wall. The main objective is to enhance the understanding and deepen the analysis of this complex flow field with the help of highly resolved particle image velocimetry measurements. A quasi-three-dimensional view of the flow field is achieved, allowing the identification of the main time-averaged coherent structures. The combined analysis of the present aerodynamic results with available heat transfer data emphasizes the role of the mean and fluctuating flow features in the heat transfer process. In particular, the stream wise/normal to the wall component of the Reynolds stress tensor is shown to be strictly related to the heat transfer rate on the channel surfaces. A correlation to estimate the heat transfer field from the aerodynamic data is presented for the high blockage rib roughened channel flow.


Author(s):  
Aleksey Bal'chugov ◽  
Mihail Vazhenin ◽  
Borislav Kustov

It has been experimentally established that the ideal displacement model adequately describes the heat transfer process in a horizontal heat exchange pipe cooled by atmospheric air


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4891
Author(s):  
Magdalena Piasecka ◽  
Kinga Strąk

This paper reports the results of heat transfer during refrigerant flow in rectangular mini-channels at stationary conditions. The impacts of selected parameters on boiling are discussed, i.e., thermal and flow parameters, dimensions and orientation of the channels. Four refrigerants (FC-72, HFE-649, HFE-7000 and HFE-7100) were used as the working fluid. Research was carried out on the experimental set-up with the test section with a single rectangular mini-channel of 180 mm long and with a group of five parallel mini-channels, each 32 mm long. The temperature of the mini-channel’s heated wall was measured by infrared thermography. Local values of the heat transfer coefficient at the contact surface between the fluid and the plate were calculated using the 1D mathematical method. The results are presented as the relationship between the heat transfer coefficient and the distance along the mini-channel length and boiling curves. Two-phase flow patterns are shown. Moreover, the results concerning various refrigerants and the use of modified heater surfaces are discussed. The main factors influencing the heat transfer process were: mini-channel inclination to the horizontal pane (the highest heat transfer coefficient at 270° and 0°), using modified heater surfaces (especially electroerosion texturing and vibration-assisted laser No. 2 texturing) and working fluids (FC-72 and HFE-7000).


2012 ◽  
Vol 7 (3) ◽  
pp. 78-83
Author(s):  
Andrey Chernyavskiy ◽  
Aleksandr Pavlenko

The Mathematical model which allows to calculate boiling expectation times in falling wavy liquid films on nonsteady heat release has been represented. It has been shown that it is necessary to take a convective constituent of a heat transfer into account in heat exchange modeling in falling films. The effective thermal conductivity coefficient which invlolves a convective constituent of a heat transfer calculated from average wave characteristics using Vorontsov method has been used. The method of accounting of the wave moving influence on a heat exchange process has been presented. The comparison of results of a numerical simulation and experimental data has been done


Sign in / Sign up

Export Citation Format

Share Document