scholarly journals ETHIOPATHOGENETIC PARALLELS OF MORPHOLOGICAL CHANGES IN CHRONIC DENTAL CARIES AND ITS COMPLICATIONS

2020 ◽  
pp. 40-46
Author(s):  
B.M. Fylenko

Tooth decay is a global health problem and a major cause of tooth loss in the adult population. Currently, the most recognized theory of dental caries development is the chemical-parasitic theory of V.D. Miller that was suggested in 1884, and is relevant to date. According to this theory, oral microorganisms are capable of converting food carbohydrates to acids, which in turn dissolve the calcium phosphates present in the enamel, causing its demineralization. Dental plaque is considered the key element in the development of dental caries, subsequently leading to the gradual formation of a dental plaque. Dental plaque (biofilm) is resulted from structurally and functionally ordered colonization of microorganisms on the tooth surface. This process is gradual and involves several links. Potential virulence factors are enzymes that are involved in the metabolism of sucrose and other carbohydrates that come with food. Continuous fermentation of carbohydrates results in a rapid local decrease in pH on the tooth enamel surface, reaching a critical level and dissolving of the apatite on the surface of the enamel in the most vulnerable areas. The prolonged existence of the foci of demineralization results in the dissolution of a more stable superficial enamel layer with the formation of a visible defect. In the projection of carious lesion of the enamel at the stages of the pigmented spot and superficial caries, pathological processes in the dentin are observed. Subsequently, the exposure to an acidic environment leads to destruction of the dentin-enamel border, contributing to spread of carious process onto the hard tooth tissues and forming a cavity in the dentin. Microscopically, the bottom of the carious cavity is represented by three layers of altered dentin. In dental caries, a physico-chemical type of occlusion of the dentinal tubules is observed, which is considered a protective mechanism, which significantly reduces the permeability of the affected dentin for microorganisms. At the stage of medium caries, the odontoblast processes are affected by bacteria and their toxins, triggering a cascade of protective reactions in the pulp mediated by odontoblasts. After recognition of the pathogen, odontoblasts produce antibacterial substances, among which the most important are beta-defensins (BD) and nitric oxide (NO). The pro-inflammatory effect of BD-2 can be exacerbated by chemoattraction of immature antigen-presenting dendritic cells, macrophages, CD4 memory cells, and natural killers by binding to chemokine receptors. Activation of TLR4 increases BD-2 gene expression, indicating different odontoblasts’ response to gram-positive and gram-negative bacteria. Exogenous factors, such as microorganisms and their toxins in dental caries, gradually destroy odontoblasts, and the stem cells of the dental pulp are differentiated into odontoblast-like cells, which provide the formation of reparative (replacement, irregular, secondary) dentine. However, the factors involved in the differentiation of odontoblast precursors and odontoblast-like cells are not known to date. In deep dental caries, a significant destruction of the hard tooth tissues is determined with the formation of a large cavity, the walls of which may lose a layer of transparent and intact dentin, while the zone of the replacement dentin is more pronounced. Moreover, deep dental caries causes the prominent inflammatory processes in the dental pulp. In the deep layers of the carious cavity Lactobacilli are found, which make up the vast majority of all microorganisms in deep dental caries. This fact should be taken into account during treatment and use inlays with antimicrobial activity to maintain the viability of the pulp. Consequently, the development of dental caries and its course depends on the factors of virulence of the oral microorganisms and the severity of the compensatory protective mechanisms. Along with the processes of demineralization, the intensity of remineralization of the enamel and dentin is crucial. Superficial, medium and deep caries leads to changes in the dental pulp which should be considered in its treatment.

2020 ◽  
Vol 10 (2) ◽  
pp. 48
Author(s):  
Sri Kunarti ◽  
Aulia Ramadhani ◽  
Laskmiari Setyowati

Background: Dental caries is one of the most common infectious diseases and often occurs in the community caused by bacteria. Attached bacteria in the tooth surface for a long time will form a biofilm and will lead to demineralization characterized by damage in the structure of the tooth enamel. The bacteria that cause dental caries and can form biofilms is Streptococcus mutans. The bacteria inside biofilms are more resistant to antibacterial agents. Flavonoids in mangosteen pericarp extract can be a cleaner alternative for the anti-biofilm cavity that has properties against Streptococcus mutans. Purpose: To determine the activity of flavonoids in mangosteen pericarp extract at a certain concentration against Streptococcus mutans bacteria. Methods: This study was a laboratory experimental study with a post-test only control group design. Streptococcus mutans were diluted according to the Mc Farland dilution standard 106 in Tryptic Soy Broth (TSB) medium and put in a flexible U-bottom microtiter plate. Then it was incubated for 5x24 hours and checked using crystal violet simple staining to see the formation of biofilms. Flavonoid extract of mangosteen pericarp performed serial dilution in a concentration of 100%, 50%, 25%, 12.5%, 6.25%, 3.125%, 1.56%, and 0.78% was added, and the incubation process were conducted for 1x24 hours. OD (Optical Density) readings were done with a wavelength of 595 nm. Results: There was a significant difference between the test groups and the positive control group. The concentration of 100% had the anti-biofilm activity and showed the value of the highest percentage of inhibition, whilst the concentration of 0.78% showed a minimum biofilm inhibition concentration. The results were demonstrated by a statistical analysis test. Conclusion: Flavonoid extract of mangosteen pericarp at a certain concentration has anti-biofilm activity against Streptococcus mutans biofilm.


2015 ◽  
Vol 49 (Suppl. 1) ◽  
pp. 18-29 ◽  
Author(s):  
Adrian Lussi ◽  
Thiago Saads Carvalho

The effectiveness of fluoride in caries prevention has been convincingly proven. In recent years, researchers have investigated the preventive effects of different fluoride formulations on erosive tooth wear with positive results, but their action on caries and erosion prevention must be based on different requirements, because there is no sheltered area in the erosive process as there is in the subsurface carious lesions. Thus, any protective mechanism from fluoride concerning erosion is limited to the surface or the near surface layer of enamel. However, reports on other protective agents show superior preventive results. The mechanism of action of tin-containing products is related to tin deposition onto the tooth surface, as well as the incorporation of tin into the near-surface layer of enamel. These tin-rich deposits are less susceptible to dissolution and may result in enhanced protection of the underlying tooth. Titanium tetrafluoride forms a protective layer on the tooth surface. It is believed that this layer is made up of hydrated hydrogen titanium phosphate. Products containing phosphates and/or proteins may adsorb either to the pellicle, rendering it more protective against demineralization, or directly to the dental hard tissue, probably competing with H+ at specific sites on the tooth surface. Other substances may further enhance precipitation of calcium phosphates on the enamel surface, protecting it from additional acid impacts. Hence, the future of fluoride alone in erosion prevention looks grim, but the combination of fluoride with protective agents, such as polyvalent metal ions and some polymers, has much brighter prospects.


2019 ◽  
Vol 14 (5) ◽  
pp. 1934578X1984933
Author(s):  
Joshua L. Mieher ◽  
Norbert Schormann ◽  
Manisha Patel ◽  
Hui Wu ◽  
Champion Deivanayagam

Dental caries characterized by acid damage of tooth enamel is a persistent disease that begins with the formation of biofilms on the tooth surface. The secreted glucosyltransferases enable Streptococcus mutans to synthesize extracellular glucan polymers using ingested starch within the oral cavity, which eventually results in the production of acid, a contributing factor to cariogenesis. In this paper, we report the cloning, expression, purification, crystallization, and preliminary X-ray diffraction characterization of glucosyltransferase B.


2004 ◽  
Vol 28 (1) ◽  
pp. 47-52 ◽  
Author(s):  
John Hicks ◽  
Franklin Garcia-Godoy ◽  
Catherine Flaitz

Dental caries is a complex disease process that afflicts a large proportion of the world's population, regardless of gender, age and ethnicity, although it does tend to affect more indivduals with a low socioeconomic status to a greater extent. The process of dental caries is dependent upon biological factors that are present within the saliva and dental plaque. There are many different agents within saliva and plaque that serve to protect the tooth surface against caries development. Salivary flow rate, buffering capacity, antimicrobial activity, microorganism aggregation and clearance from the oral cavity, immune surveillance, and calcium phosphate binding proteins all interact to inhibit or reverse demineralization of exposed tooth surfaces. Cariogenic bacteria levels within the saliva and plaque determine whether caries will occur or not, and the concentration in saliva and plaque are intimately related to the type of carbohydrate ingestion and the frequency of ingestion, as well as the oral hygiene practiced by the individual.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 1764
Author(s):  
Mohamed Shamel ◽  
Mahmoud M. Al-Ankily ◽  
Mahmoud M. Bakr

Background: Tooth whitening usually includes the direct use of gels containing carbamide or hydrogen peroxide on the tooth enamel surface through a wide variety of products formulas. A generally new advancement in whitening of teeth uses the significant importance of the tooth color shift from yellow to blue in delivering a general enhancement in the observation of tooth whiteness. The aim of the current work was to measure the tooth whitening effects, surface roughness and enamel morphology of six different types of blue covarine-containing and blue covarine-free toothpastes using in vitro models. Methods: A total of 70 sound extracted human premolars were randomly and equally divided into seven groups, and each subjected to tooth brushing using different toothpastes. Tooth color and enamel surface roughness were measured before and after the brushing procedure using a white light interferometer, and scanning electron microscopy (SEM) was used to assess tooth surface after the procedure. Results: Toothpaste containing blue covarine resulted in the greatest improvement in tooth color amongst all groups as well as a statistically significant color difference when compared to blue covarine-free toothpaste.  Furthermore, blue covarine-containing toothpaste resulted in fewer morphological changes to the enamel surface. This was confirmed with SEM images that showed smooth enamel surfaces with fine scratches.   Conclusions: The results from the present study show that blue covarine containing toothpastes are reliable, effective in tooth whitening and produce less surface abrasion when compared to blue covarine-free toothpastes.


Author(s):  
C. Deery ◽  
K.J. Toumba

Almost all research on the process of dental caries supports the chemoparasitic theory proposed by W.D. Miller in 1890. This is now more commonly known as the acidogenic theory of caries aetiology. The main features of the caries process are as follows. 1. Fermentation of carbohydrate to organic acids by micro-organisms in plaque on the tooth surface. 2. Acid production, which lowers the pH at the enamel surface below the level (the critical pH) at which enamel will dissolve. 3. When carbohydrate is no longer available to the plaque microorganisms, the pH within plaque will rise because of the outward diffusion of acids and their metabolism and neutralization in plaque, so that remineralization of enamel can occur; 4. Dental caries progresses only when the balance between demineralization and remineralization favours the former. The realization that demineralization and remineralization are in equilibrium is key to understanding the dynamics of the carious lesion and its prevention. One of the interesting features of an initial carious lesion of the enamel is that the lesion is subsurface, i.e. most of the mineral loss occurs beneath a relatively intact enamel surface. This contrasts strongly with the histological appearance of enamel after a clean tooth surface has been exposed to acid, where the surface is etched and there is no subsurface lesion. This dissolution of the surface of enamel, or etching, is a feature of enamel erosion caused, among other things, by dietary acids. Therefore the carious process and erosion differ completely, as erosion is a surface phenomenon. The explanation for the intact surface layer in enamel caries seems to lie in diffusion dynamics: the layer of dental plaque on the tooth surface acts as a partial barrier to diffusion. Further erosion occurs at much lower pH values (pH <4) than caries. Dental plaque forms on uncleaned tooth surfaces and is readily apparent if toothbrushing is stopped for 2–3 days. Contrary to popular opinion, plaque does not consist of food debris, but is a biofilm; 70% is comprised of micro-organisms—about 100 million organisms per milligram of plaque. When plaque is young cocci predominate, but as plaque ages the proportions of filamentous organisms and veillonellae increase.


2014 ◽  
Vol 81 (1) ◽  
pp. 332-338 ◽  
Author(s):  
Erica Shapiro Frenkel ◽  
Katharina Ribbeck

ABSTRACTUnderstanding how the body's natural defenses function to protect the oral cavity from the myriad of bacteria that colonize its surfaces is an ongoing topic of research that can lead to breakthroughs in treatment and prevention. One key defense mechanism on all moist epithelial linings, such as the mouth, gastrointestinal tract, and lungs, is a layer of thick, well-hydrated mucus. The main gel-forming components of mucus are mucins, large glycoproteins that play a key role in host defense. This study focuses on elucidating the connection between MUC5B salivary mucins and dental caries, one of the most common oral diseases. Dental caries is predominantly caused byStreptococcus mutansattachment and biofilm formation on the tooth surface. OnceS. mutansattaches to the tooth, it produces organic acids as metabolic by-products that dissolve tooth enamel, leading to cavity formation. We utilize CFU counts and fluorescence microscopy to quantitatively show thatS. mutansattachment and biofilm formation are most robust in the presence of sucrose and that aqueous solutions of purified human MUC5B protect surfaces by acting as an antibiofouling agent in the presence of sucrose. In addition, we find that MUC5B does not alterS. mutansgrowth and decreases surface attachment and biofilm formation by maintainingS. mutansin the planktonic form. These insights point to the importance of salivary mucins in oral health and lead to a better understanding of how MUC5B could play a role in cavity prevention or diagnosis.


2005 ◽  
Vol 26 (3) ◽  
pp. 107 ◽  
Author(s):  
Stuart Dashper ◽  
Eric Reynolds

Dental caries or tooth decay is one of the most prevalent bacterial infectious diseases of mankind. In recent oral health surveys, more than 60% of Australian teenagers surveyed had experienced the disease and most dentate adults surveyed exhibited multiple teeth affected by caries. Treating the consequences of dental caries accounts for over 50% of the total cost of providing dental services in Australia, which in 1998 was estimated at $2.6 billion. Dental caries is a dynamic process that is initiated by microbial biofilms on the tooth surfaces (dental plaque) resulting in a disturbance of the equilibrium between tooth mineral and the surrounding plaque fluid so that over time there is a net loss of mineral from the tooth surface. This demineralisation of the enamel may ultimately lead to cavitation of the surface of the tooth and once this stage of the disease has been reached only restorative methods (fillings) can be employed to limit the spread of decay and eventual loss of the tooth.


2021 ◽  
Author(s):  
Alisha Evangeline Prince ◽  
David J McDonald ◽  
Soumya Roy

Dental caries is caused by dental plaque, a community of micro-organisms embedded in an extracellular polymer matrix as a biofilm on the tooth surface. Natural products that are widely available could be used as an alternative or adjunctive anti-caries therapy. Sometimes, when two products are used together, they yield a more powerful antimicrobial effect than the anticipated additive effect. These synergistic combinations are often better treatment options because individual agents may not have sufficient antimicrobial action to be effective when used alone. Cranberries contain phenolic compounds like proanthocyanidins (PAC) that disrupt biofilm formation. Manuka honey has high concentrations of the agent methylglyoxal, which is cariostatic. Because these agents have varied modes of antimicrobial action, they show potential for possible synergistic effects when paired. Various cranberry extracts were tested pairwise with manuka honey or methylglyoxal by well-diffusion assays and 96-well checkerboard assays in the presence of Streptococcus mutans to test for synergy. Synergy was demonstrated in two of the cranberry extracts paired with manuka honey. The synergistic combinations found in this research thus can be considered as candidates for the formulation of a dentifrice that could be used to inhibit the formation of dental plaque and thereby avoid the development of caries.


2016 ◽  
Vol 7 (44) ◽  
pp. 6761-6769 ◽  
Author(s):  
Shuhui Zhang ◽  
Libang He ◽  
Yinxin Yang ◽  
Bo Yang ◽  
Yixue Liao ◽  
...  

Remineralization and reduction of cariogenic bacteria at the tooth surface are effective ways to treat dental caries.


Sign in / Sign up

Export Citation Format

Share Document