scholarly journals LAYOUT SOLUTIONS FOR DRIP IRRIGATION NETWORK MODULES OF IRRIGATED WOOD-FRUIT PLANTS, CULTIVATED IN GARDEN PLANTINGS

Author(s):  
V. N. Shkura ◽  
◽  
A. S. Shtanko ◽  

Purpose: to develop layout and design schemes for the territorial arrangement of drip irrigated commercial fruit orchards. Materials and methods. When the goal was achieved, the tasks on assessing and choosing the layouts of the garden's plant modules – garden squares, quarters and rows that make up tree-fruit plantations, and the development of irrigation network modules that ensure their drip irrigation were solved. The factual basis of the study was formed by the survey data of wood-fruit orchards and well-known recommendations on the organization of the garden plantings territory. Results. Taking a modular approach to the planning of perennial woody-fruit plantations, implying the arrangement of garden squares, quarters and rows as a basis, the corresponding schemes of the section, irrigation and watering modules ensuring their drip irrigation, were suggested. Taking into account the shapes and sizes of eight-squares garden blocks, two schemes of drip sectional modules were proposed, including a sectional distributor, sprinklers and a system of irrigation pipelines. The irrigation module, which provides watering of the garden quarter, includes an irrigation pipeline and irrigation pipelines fed from it. The watering module provides for irrigation of one row of woody-fruit plants and includes one (for a single-line irrigation module) or two (for a two-line irrigation module) irrigation pipelines with a system of built-in drip micro-outlets, placed taking into account the planting pattern of perennial plants and forming contours or strips of soil moisture in the sub-drip soil space. Conclusions. Rational layout solutions for drip irrigation network modules are proposed, corresponding to garden modules and allowing unifying design solutions for organizing the territory of drip irrigated gardens cultivated according to industrial technologies for planting, maintenance and harvesting operations.

Author(s):  
A. S. Shtanko ◽  
◽  
V. N. Shkura ◽  

Purpose: technical support for drip irrigation of the inter-row root-inhabited soil space in fruit garden plantations. Materials and methods. The object of the study was the irrigation network of perennial tree-fruit orchard plantations. During the research, analysis and variant comparison were carried out, highlighting the advantages and disadvantages of the structures under consideration. When improving the design of the drip irrigation facility, the methods of exploratory design were used. Results. During the research, the experience of operating the drip irrigation systems of perennial orchards was generalized and the basic requirements for the drip irrigation network in perennial orchards were formed. As an object for further research, partially satisfying these requirements, a constructive diagram of a drip irrigation facility for moistening the soil in the inter-row root-inhabited soil space of tree-fruit orchard plantations, given in RU Patent no. 2713136, was adopted. The disadvantage of this design of a drip irrigation facility is low reliability of the elastic coupling, which should be deformed when the position of the drip console changes, have the necessary rigidity to lift the drip console from the working position to the idle position, and be a sealed conduit connecting the drip console and the tee. As a result of the research, an improved design of the irrigation structure has been proposed, which does not include deformable elements. Conclusions. The proposed design scheme of a drip irrigation facility for perennial fruit plantations meets the requirements of manufacturability, has the ability to automatically operate in the irrigation mode and in the inter-irrigation period, and provides irrigation water supply to certain points of the location of the developed root system of perennial plants, including the inter-row root-inhabited soil space.


Author(s):  
A. S. Shtanko ◽  
◽  
V. N. Shkura ◽  

Purpose: to develop a design-layout scheme for a two-line irrigation module of a drip irrigation system, providing effective drip irrigation of perennial tree fruit crops cultivated in garden plantings. Materials and methods. The main requirements for developing an irrigation module scheme are: ensuring the required proportion of moisture area, ensuring a regulated distance between the woody plant stem and the nearest emitter at least 0.2 m, ensuring the possibility of periodically changing the emitter position relative to the plant stem. When developing the scheme of the irrigation module, the methods of search design were used. Results. A constructive scheme of a two-line irrigation module intended for drip irrigation of one row of plants in a perennial tree fruit plantation is proposed, it includes two irrigation lines symmetrically located relative to the axis of a row of plants with emitters arranged in them. Drip tubing with wall thickness from 0.8 to 1.2 mm is recommended for use as irrigation lines. Drip lines are located on supports at a height of 50 cm from the earth's surface and have the ability to change their position relative to the axis of a row of plants. The head and tail structure of the irrigation module are connected to the supply and discharge pipelines through flexible water conduits. The end part of the irrigation module provides for the possibility of collecting and discharging wash water (solution). Conclusions. As a result of the studies carried out, a constructive solution for a two-line irrigation module of a drip irrigation network was proposed, which allows: to increase the proportion of the moistening area from the area of nutrition of each plant to the standard values, to ensure effective watering of the root-inhabited soil space at different stages of plant growth and development, to reduce the intensity of soil degradation during drip irrigation.


Author(s):  
A. A. Kupriyanov ◽  
◽  
Ya. E. Udovidchenko ◽  

Purpose: development of a graphic-analytical method for assessing the effect of soil conditions on moisture contours size formed during drip irrigation to select the parameters of drip modules for irrigating tree-fruit plants cultivated in garden plantations. Materials and methods: the planned dimensions of moisture contours of sub-drip soil space are taken as indicators for assessing and determining the parameters of irrigation modules for drip irrigation of row planted tree-fruit crops from along-row traced irrigation pipelines. When analyzing the parameters and location of moisture zones, the layout of plants in a garden with a distance between trees in a row equal to 2 m was considered, with a different number of drip emitters on the drip line within the inter-tree area. Results: using the author's dependence, the diameters and areas of moisture contours formed during drip irrigation in southern medium-thick chernozems were determined. For typical schemes for placing drip emitters along a row of traced drip lines that provide soil moistening in the undercrown space of fruit plants, moisture contours formed during drip irrigation are built. The obtained geometric parameters of moisture zones for different patterns of irrigation lines, characterized by different inter-emitters distances and different numbers and locations of drip emitters, are compared with the area of plant nutrition. Based on the results of comparing the areas of moisture zone and the zone of plant root systems distribution, a high degree of locality of the wetted space was noted. Conclusions: the graphic images and quantitative characteristics of drip moisture zones in the undercrown along the row space of plants created using the proposed graphic-analytical method allow assessing the state of its moisture content and making a decision on the parameters and schemes of the irrigation module for certain soil and technological conditions of the garden plantation.


Insects ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 419
Author(s):  
James Christopher Bergh ◽  
William R. Morrison ◽  
Jon W. Stallrich ◽  
Brent D. Short ◽  
John P. Cullum ◽  
...  

The invasive Halyomorpha halys invades crop fields from various bordering habitats, and its feeding on crops has caused significant economic losses. Thus, H. halys is considered a perimeter-driven threat, and research on alternative management tactics against it has focused on intervention at crop edges. Woodlands adjacent to crop fields contain many hosts of H. halys and are therefore considered “riskiest” in terms of pest pressure and crop injury. However, tree fruit orchards in the Mid-Atlantic, USA, are often bordered on one or more sides by woodlands and other habitats, including other tree fruit blocks, and field crops. Monitoring H. halys using pheromone traps has most often focused on the crop–woodland interface, but the relative effects of woodlands and other habitats bordering orchards on pest pressure and crop injury have not been examined. A two-year study comparing seasonal captures of H. halys and fruit injury among different habitats bordering commercial apple and peach orchards in the Mid-Atlantic revealed that while woodland borders often posed the greatest risk, other border habitats also contributed significantly to captures and injury in numerous instances. The relevance of these findings to refining and optimizing perimeter-based monitoring and management approaches for H. halys is discussed.


Author(s):  
André L. B. de O. Silva ◽  
Regina C. M. Pires ◽  
Rafael V. Ribeiro ◽  
Eduardo C. Machado ◽  
Gabriel C. Blain ◽  
...  

ABSTRACT The present study aimed to evaluate the development, yield and quality of four sugarcane cultivars fertigated by subsurface drip system. The experiment was carried out in Campinas-SP, Brazil, from January 2012 to November 2013, with the cultivars SP79-1011, IACSP94-2101, IACSP94-2094 and IACSP95-5000 subjected to daily irrigations. The irrigations depths were applied to bring soil moisture to field capacity. Soil moisture was monitored using soil moisture probes. Samples were collected along the crop cycle in order to evaluate crop development and yield, at the end of the first and second ratoons. Stalk height showed good correlation for the estimation of crop yield, with R2 equal to or higher than 0.96. The cultivar IACSP95-5000 showed the highest yield in the first ratoon. In the second ratoon the highest yield was observed in IACSP94-2101, followed by IACSP95-5000 and SP79-1011. Considering the yield results associated with the technological analysis, such as soluble solids content and apparent sucrose, the cultivar IACSP95-5000 excelled the others in the cultivation under subsurface drip irrigation.


Author(s):  
Ortega-Corral César ◽  
B. Ricardo Eaton-González ◽  
Florencio López Cruz ◽  
Laura Rocío, Díaz-Santana Rocha

We present a wireless system applied to precision agriculture, made up of sensor nodes that measure soil moisture at different depths, applied to vine crops where drip irrigation is applied. The intention is to prepare a system for scaling, and to create a Wireless Sensor Network (WSN) that communicates by radio frequency with a base station (ET), so that the gathered data is stored locally and can be sent out an Internet gateway.


Neutron ◽  
2020 ◽  
Vol 20 (01) ◽  
pp. 63-71
Author(s):  
Acep Hidayat ◽  
Marcellino Rico Ariana

The Plantation Network has a land area of ​​375 ha. Population which is directly proportional to the necessities of life, one of which is in the food sector, has made the government take the initiative to meet the needs and welfare of the community with productive agricultural land and fields. The data includes secondary data on 10-year rainfall from Depati Parbo and Kayu Aro Station and 10-year climatology from Kayu Aro Climatology Station. The calculation method used is the rainfall intensity Average method, Evapotranspiration modification Penman method, Debit danalan DR.FJ Mock method, cropping patterns, and irrigation water needs. Related to the calculation of 6 alternative cropping patterns with different types of plants and different initial planting plans by making comparisons with the existing discharge factor (Q80). Obtained that the cropping pattern is very possible, namely using the cropping pattern PADI-PADI-PALAWIJA. The most efficient and optimal planting pattern is that this cropping system consists of PADI-PADI-ON with large water demand in tertiary plots (NFR tertiary plots) producing 0 - 1,308 ltr / sec/ha with a maximum of 1,308 ltr / ha / February II, while the need for irrigation water in the intake (DR intake) ranges from 0 - 1,615 ltr sec/ha with a maximum of 1,615 ltr / sec/ha in February II. The available debit and debit in the Irrigation Network Planning Mark is very abundant with the mainstay discharge (Q80) for irrigation, the maximum available debit (Q80) can occur in November with 202,207 ltr / sec/ha and the minimum in August with 115,012 ltr / sec / Ha. Based on the results of the discharge and water above, it can be determined about the ratio of water/air equilibrium between discharge and water Q80 and the need for irrigation water requires a large/adequate surplus.


Sign in / Sign up

Export Citation Format

Share Document