Strength Enhancement of Bottom Ash-Based Concretes Using Metakaolin

2011 ◽  
Vol 695 ◽  
pp. 287-290
Author(s):  
J. M. Zhao ◽  
Z. X. Yang ◽  
Kyu Hong Hwang ◽  
M. C. Kim

To replace bottom ash for natural sand completely, the mix proportions of bottom ash in concrete was adjusted according to tab density and replacement ratio of Metakaolin/Cement were established. And then testing for slump, setting time, and compressive strength was conducted. According to test results, the compressive strength of concrete using the bottom ash was lower than that of concrete using natural sand (BAO concrete). But by adjusting the amount of bottom ash in concrete according tab density so that the fine aggregate proportions change 44% to 38%, the compressive strength of concrete using the bottom ash could even be higher than BAO concrete. And the chloric content of concrete using the bottom ash increased as the replacement ratio of bottom ash increased, but it is satisfied with the chloric content of fresh concrete 0.30 kg/m2 below (concrete standard specification regulation value).

2011 ◽  
Vol 488-489 ◽  
pp. 278-281
Author(s):  
J. M. Zhao ◽  
Z. X. Yang ◽  
Kyu Hong Hwang ◽  
J.K. Lee ◽  
M. C. Kim ◽  
...  

To replace bottom ash for natural sand completely, the mix proportions of bottom ash in concrete was adjusted according to tab density and replacement ratio of polymeric resin/Potland cement(PC) were established. And then testing for slump, setting time, and compressive strength was conducted. According to test results, the compressive strength of concrete using the bottom ash was lower than that of concrete using natural sand (BA0 concrete). But by adjusting the amount of bottom ash in concrete according tab density so that the fine aggregate proportions change 44% to 38%, the compressive strength of concrete using the bottom ash could even be higher than BA0 concrete. And as the polymeric resin content of bottom ash concrete increased, strength would be increased drastically, but proper dispersant should be cooperated with polymeric resin cement with fine bottom ash powders.


2020 ◽  
Vol 1005 ◽  
pp. 47-56
Author(s):  
Chung Hao Wu ◽  
Hsien Sheng Peng ◽  
How Ji Chen

This study aims to develop the mix proportion of concrete incorporating water purification sludge (WPS), as parts of fine aggregate and consequently investigate its mechanical properties and durability. The experiments involve three sludges from Da-Nan, Lin-Nei and Nan-Hua water treatment plants in Taiwan. In addition to the control mixture without WPS, four replacement levels of 20%, 40%, 60% and 80% of fine aggregate were selected for preparing the concrete mixture. The concretes tested were designed to have three target compressive strengths of 14MPa, 18MPa and 21MPa. Test results show that the compressive strengths of the Da-Nan and Lin-Nei WPS concretes meet the design requirements, and the strength of the Nan-Hua WPS concrete is lower to be only suitable for application in low strength concretes. The shrinkage deformation of the Da-Nan and Lin-Nei WPS concretes increase with the increase of sludge replacement level, however, the shrinkage deformation decreases with the increase of the compressive strength of concrete. If the sludge replacement ratio is less than 40%, its effect on the compressive strength of the Da-Nan and Lin-Nei WPSs concrete is limited whether they are cured in water or in the air.


Author(s):  
Harish R ◽  
Ramesh S ◽  
Tharani A ◽  
Mageshkumar P

This paper presents the results of an experimental investigation of the compressive strength of concrete cubes containing termite mound soil. The specimens were cast using M20 grade of concrete. Two mix ratios for replacement of sand and cement are of 1:1.7:2.7 and 1:1.5:2.5 (cement: sand: aggregate) with water- cement ratio of 0.45 and varying combination of termite mound soil in equal amount ranging from 30% and 40% replacing fine aggregate (sand) and cement from 10%,15%,20% were used. A total of 27 cubes, 18 cylinders and 6 beams were cast by replacing fine aggregate, specimens were cured in water for 7,14 and 28 days. The test results showed that the compressive strength of the concrete cubes increases with age and decreases with increasing percentage replacement of cement and increases with increasing the replacement of sand with termite mound soil cured in water. The study concluded that termite mound cement concrete is adequate to use for construction purposes in natural environment.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 940
Author(s):  
Se-Jin Choi ◽  
Young-Uk Kim ◽  
Tae-Gue Oh ◽  
Bong-Suk Cho

The shortage of natural aggregates has recently emerged as a serious problem owing to the tremendous growth of the concrete industry. Consequently, the social interest in identifying aggregate materials as alternatives to natural aggregates has increased. In South Korea’s growing steel industry, a large amount of steel slag is generated and discarded every year, thereby causing environmental pollution. In previous studies, steel slag, such as blast furnace slag (BFS), has been used as substitutes for concrete aggregates; however, few studies have been conducted on concrete containing both BFS and Ferronickel slag (FNS) as the fine aggregate. In this study, the compressive strength, chloride ion penetrability, and carbonation characteristic of concrete with both FNS and BFS were investigated. The mixed slag fine aggregate (MSFA) was used to replace 0, 25%, 50%, 75%, and 100% of the natural fine aggregate volume. From the test results, the highest compressive strength after 56 days was observed for the B/F100 sample. The 56 days chloride ion penetrability of the B/F75, and B/F100 samples with the MSFA contents of 75% and 100% were low level, approximately 34%, and 54% lower than that of the plain sample, respectively. In addition, the carbonation depth of the samples decreased with the increase in replacement ratio of MSFA.


Jurnal CIVILA ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 213
Author(s):  
Asrul Majid ◽  
Hammam Rofiqi Agustapraja

Infrastructure development is one of the important aspects of the progress of a country where most of the constituents of infrastructure are concrete. The most important constituent of concrete is cement because its function is to bind other concrete materials so that it can form a hard mass. The large number of developments using cement as a building material will leave quite a lot of cement bags.In this study, the authors conducted research on the effect of adding cement waste to the compressive strength of concrete. This study used an experimental method with a total of 24 test objects. The test object is in the form of a concrete cylinder with a diameter of 15 cm and a height of 30 cm and uses variations in the composition of the addition of cement waste cement as a substitute for fine aggregate, namely 0%, 2%, 4% and 6%. K200). The compressive strength test was carried out at the age of 7 days and 28 days.The test results show that the use of waste as a partial substitute for fine aggregate results in a decrease in the compressive strength of each mixture. at the age of 7 days the variation of 2% is 16.84 MPa, 4% is 11.32 MPa and for a mixture of 6% is 6.68 MPa. Meanwhile, the compressive strength test value of 28 days old concrete in each mixture decreased by ± 6 MPa. So the conclusion is cement cement waste cannot be used as a substitute for fine aggregate in fc 16.6 (K200) quality concrete because the value is lower than the specified minimum of 16.6 MPa.


2019 ◽  
Vol 5 (3) ◽  
pp. 108
Author(s):  
Muhammad Malik Ibrahim ◽  
Priyanto Saelan

ABSTRAKSalah satu limbah yang dapat digunakan sebagai pengganti bahan pembuat beton adalah abu batu. Abu batu merupakan limbah dari proses pemecahan bongkahan batu. Ditinjau dari ukuran butirannya maka abu batu merupakan agregat halus. Abu batu memiliki penyerapan air yang lebih tinggi daripada pasir alami, maka dari itu untuk mendapatkan kelecakan campuran beton yang sama dengan kelecakan campuran beton menggunakan pasir alami, penggunaan abu batu sebagai agregat halus dalam campuran beton perlu tambahan air. Namun hal ini akan menyebabkan faktor air-semen bertambah. Sehingga hasil kuat tekan akan menurun. Hal ini sesuai dengan hubungan antara kuat tekan beton dengan faktor air-semen. Perekayasaan yang dilakukan adalah dengan menaikkan faktor granular (G) dan menaikkan kuat tekan rencana berdasarlan teori Dreux. Abu batu pada penelitian ini digunakan sebagai substitusi pasir alami dengan proporsi 0%, 20%, 40%, 60%, 80%, dan 100%. Hasil penelititan ini memperlihatkan penggunaan abu batu sebagai agregat halus lebih dari 40% akan sangat drastis menurunkan kuat tekan beton.Kata kunci: perekayasaan, substitusi, campuran beton, abu batu, agregat halus ABSTRACTOne of the wastes that can be used as a substitute for concrete materials is stone ash. Stone ash is a waste from the process of stone crusher. Consider from the size of the grain, stone ash as fine aggregate. Stone ash has a higher water absorption than natural sand, therefore to get the concrete workability that is the same as the concrete workability using natural sand, the use of stone ash as fine aggregate in the concrete mixture needs additional water. But this will cause the cement-water ratio to increase. So that the compressive strength will decrease. This is following the relationship between the compressive strength of concrete and the cement-water ratio. Engineering is done by increasing the granular factor (G) and increasing the compressive strength of the plan based on Dreux theory. Stone ash in this study was used as a substitute for natural sand with a proportion of 0%, 20%, 40%, 60%, 80%, and 100%. The results of this research show that the use of stone ash as fine aggregate of more than 40% will greatly reduce the compressive strength of the concrete.Keywords: engineering, substitute, concrete mixture, stone ash, fine aggregate


Author(s):  
Nguyen Huu May ◽  
Huynh Trong Phuoc ◽  
Le Thanh Phieu ◽  
Ngo Van Anh ◽  
Chau Minh Khai ◽  
...  

This study presents an experimental investigation on the recycling of waste incineration bottom ash (IBA) as a fine aggregate in the production of interlocking concrete bricks (ICB). Before being used, the concentration of heavy metal in IBA was determined to confirm it is a non-toxic material. In this study, the IBA was used to replace crushed sand (CSA) in the brick mixtures at different replacement levels of 0%, 25%, 50%, 75%, and 100% (by volume). The ICB samples were checked for dimensions, visible defects, compressive strength, bending strength, water absorption, and surface abrasion in accordance with the related Vietnamese standards. The test results demonstrated that the IBA used in this study was a non-toxic material, which can be widely used for construction activities. All of the ICB samples prepared for this study exhibited a nice shape with consistent dimensions and without any visible defects. The incorporation of IBA in the brick mixtures affected engineering properties of the ICB samples such as a reduction in the compressive strength and bending strength and an increment in water absorption and surface abrasion of the brick samples. As a result, the compressive strength, bending strength, water absorption, and surface abrasion values of ICB samples at 28 days were in the ranges of 20.6 – 34.9 MPa, 3.95 – 6.62 MPa, 3.8 – 7.2%, and 0.132 – 0.187 g/cm2, respectively. Therefore, either partial or full replacement of CSA by IBA, the ICB with grades of M200 – M300 could be produced with satisfying the TCVN 6476:1999 standard in terms of dimensions, visible defects, compressive strength, water absorption, and surface abrasion. These results demonstrated the high applicability of the local IBA in the production of the ICB for various construction application purposes. Keywords: interlocking concrete brick; waste incineration bottom ash; visible defect; compressive strength; bending strength; water absorption; surface abrasion.


2019 ◽  
Vol 8 (3) ◽  
pp. 2806-2808

This paper concentrates on preparing concrete in which reverse osmosis waste water is incorporated in mixing and to cure. Experimental procedure consists of 4 mix proportions of various water cement ratios. Fresh concrete is tested for workability and flowing ability. Cubes were casted and tested to find out compressive strength of concrete. Test results of potable water concrete and RO waste water concrete were compared. Results show that workability of both the concretes is almost same. When coming to the compressive strength, RO waste water concrete shows less strength at 28days compared to normal concrete.


2013 ◽  
Vol 639-640 ◽  
pp. 299-303 ◽  
Author(s):  
Hao Wu ◽  
Jian Yin ◽  
Shu Bai

Laboratory experiments were conducted in this study to investigate the suitability and applicability of incorporating fly ash, bottom ash and paper sludge with various contents into CLSM mixtures. Fly ash was used as a substitute for Portland cement, bottom ash was added by partially replacing fine aggregate, while paper sludge was treated as a fibrous admixture. Physical and mechanically properties of the CLSM mixtures were examined through flowability, compressive strength, and splitting tensile strength tests. The test results indicated that both fly ash and bottom ash can be potentially used as basic materials for CLSM mixtures with desirable performances, and by limiting the amount of cement used in the mixture, the ultimate strength of CLSM could be easily controlled available for excavation. The strength of the CLSM mixtures were reduced to some extent by incorporating high content of fly ash, while they were significantly increased with high content of natural sand replaced by bottom ash. Due to the high water absorption of the paper sludge, the mixture with paper sludge added exhibited relatively low flowability, and it showed no benefits on enhancing compressive and splitting tensile strengths as common fibrous materials.


Sign in / Sign up

Export Citation Format

Share Document