scholarly journals A NOVEL SLIDING MODE CONTROLLER FOR FUNCTIONAL ELECTRICAL STIMULATION

2002 ◽  
Vol 35 (1) ◽  
pp. 199-203 ◽  
Author(s):  
Sašo Jezernik ◽  
Philipp Inderbitzin ◽  
Thierry Keller ◽  
Robert Riener
2018 ◽  
Vol 20 (1) ◽  
Author(s):  
Max Harrison Cohen

Functional electrical stimulation (FES) is the application of electrical current across muscle fibers to elicit muscle contractions with the goal of achieving some function outcome (e.g. walking, cycling). FES-cycling has become a very popular rehabilitative strategy over the years as it has proven to yield numerous health benefits for individuals suffering from neurological conditions. In this paper the idea of FES-cycling is extended to the upper limbs and a new arm-cycling testbed is introduced. A dynamic model for the arm-cycle-rider system is presented and a robust sliding-mode controller is developed for the nonlinear, autonomous, state-dependent, switched system. The controller is designed with the goal of tracking a specified crank velocity by switching between muscle stimulation and an electric motor. Despite the uncertainties and nonlinearities associated with the system, global exponential tracking of the desired crank trajectory is proven with a Lyapunov-based stability analysis. Preliminary experiments are performed with an able-bodied subject to characterize the performance of the designed controller. The results of the experiment are presented to illustrate stable tracking of the designed control system.


Author(s):  
Seyyed Arash Haghpanah ◽  
Morteza Farrokhnia ◽  
Sajjad Taghvaei ◽  
Mohammad Eghtesad ◽  
Esmaeal Ghavanloo

Functional electrical stimulation (FES) is an effective method to induce muscle contraction and to improve movements in individuals with injured central nervous system. In order to develop the FES systems for an individual with gait impairment, an appropriate control strategy must be designed to accurate tracking performance. The goal of this study is to present a method for designing proportional-derivative (PD) and sliding mode controllers (SMC) for the FES applied to the musculoskeletal model of an ankle joint to track the desired movements obtained by experiments on two healthy individuals during the gait cycle. Simulation results of the developed controller on musculoskeletal model of the ankle joint illustrated that the SMC is able to track the desired movements more accurately than the PD controller and prevents oscillating patterns around the experimentally measured data. Therefore, the sliding mode as the nonlinear method is more robust in face to unmodeled dynamics and model errors and track the desired path smoothly. Also, the required control effort is smoother in SMC with respect to the PD controller because of the nonlinearity.


Sign in / Sign up

Export Citation Format

Share Document