Analysis of the Effect of Body Shape of Multiport Averaging Pitot Tube on Permanent Pressure Loss Using ANSYS/FLUENT

2012 ◽  
Vol 45 (7) ◽  
pp. 322-326
Author(s):  
Sona Sediva ◽  
Miroslav Uher

Author(s):  
Jehanzeb Masud ◽  
Omar Qazi ◽  
Shakil Sheikh ◽  
Khalid Parvez ◽  
Farooq Akram


Author(s):  
A. E. Zaryankin ◽  
T. Padashmoghanlo

Abstract: The present paper presents a comparison of the performance of different flow conditioners. The numerical investigation is carried out using ANSYS FlUENT. Flow conditioners efficiency is evaluated on the basis of the ability of these devices to produce a uniform velocity profiles with low pressure loss under high-level disturbance conditions, such as those produced by gate and ball valves. A new flow conditioner device, which consists of two perforated conic plates has been designed, and demonstrated a high performance within a short distance downstream of the flow conditioner.



Author(s):  
Divya Bihari ◽  
Sanjay Bokade

Abstract The present study assess the thermal hydraulic performance of V-shaped, W-shaped and 2W-shaped ribs in a rectangular channel with an aspect ratio of 6:1. The rib-roughened copper plates were located at the bottom of the channel to simulate the backside wall cooling of gas turbine combustor liners. The rib height-to-hydraulic diameter ratio (e/Dh) was 0.05834 and the rib pitch-to-height ratio (P/e) was 10 for all the cases. The experiments were carried out at the Reynolds numbers ranging from 32000 to 72000. A steady state heat transfer measurement method is used to investigate the heat transfer enhancement of ribbed wall against a smooth wall. Pressure taps were located at two stream-wise locations in channel walls to measure the pressure loss. To validate the understanding of experimental data, all the rib configurations were investigated numerically using ANSYS FLUENT. A low Reynolds number k-ε turbulence model was used to predict the heat transfer in the channel. The results show that the 2W ribs have the highest heat transfer and pressure loss characteristics in channel. It gives around 1.4–1.6 times increase in average Nusselt number and 2.7–3.3 times increase in friction factor as compare to smooth plate. Among all the cases V ribs obtained lowest heat transfer and pressure loss characteristics. Furthermore, both heat transfer enhancement and pressure loss increases with increasing Reynolds number.



2020 ◽  
Vol 315 ◽  
pp. 03003
Author(s):  
Vadim E. Zinurov ◽  
Oksana S. Dmitrieva ◽  
Oksana S. Popkova

The article deals with the problem of increasing the efficiency of dedusting the gas flow from the finely dispersed particles smaller than 10 μm. In order to solve this problem, a design of centrifugal separator with coaxially arranged pipes is proposed. The described principle of operation includes the large values of centrifugal forces, which take place inside the device when the flow is swirled, and these forces throw the finely dispersed particles to the walls of device. This scientific paper shows a numerical simulation of gas flow dedusting process by means of ANSYS Fluent software package. The efficiency of dedusting the gas from the finely dispersed particles of up to 10 μm in the device is on average within the range of 53.8–76.7%. The exponential function, describing the changes in the pressure loss from the input gas rate, is obtained. In the course of studies, it was found that the pressure loss in the device is not more than 800 Pa at the input gas rate from 3 to 19 m/s.



2020 ◽  
Vol 329 ◽  
pp. 03035
Author(s):  
Vadim E. Zinurov ◽  
Andrey V. Dmitriev ◽  
Guzel R. Badretdinova ◽  
Rustem Ya. Bikkulov ◽  
Ilnur N. Madyshev

In order to increase the efficiency of gas purification from the particles of up to 20 microns and to increase the service life of bag and electrostatic filters, the authors propose to use a centrifugal separation device with coaxially arranged pipes to be installed before the fine purification devices. The numerical studies of gas dynamics in a separation device were conducted in ANSYS Fluent software package. As a result of conducted numerical studies, it was found that the pressure loss in the centrifugal separation device is not more than 70 Pa at the inlet gas flow rate from 1 to 15 m/s and the width of rectangular hole within the range from 10 to 15 mm. The low pressure losses are caused by the design features; in particular, the resulting vortices in the inter-cylindrical space practically do not contact the wall surfaces of device. The equations of pressure loss depending on the width of rectangular holes and the hydraulic resistance coefficient of separation device depending on the inlet gas flow rate were obtained. The design coefficient of hydraulic resistance of separation device was equal to 0.45.



CFD letters ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 33-44
Author(s):  
Nguyen Minh Phu ◽  
Pham Ba Thao ◽  
Duong Cong Truyen

In this paper, a nanofluid-based solar collector duct equipped with baffles is examined numerically. Baffles are located on the back plate to guide nanofluid flow toward absorber plate for heat transfer enhancement purposes. Cu-water nanofluid with fixed flow rate and concentration in the baffled duct are investigated for thermohydraulic mechanisms. Baffles with different inclination angles, heights and pitches are considered in this study. Numerical simulations are performed using Ansys fluent software with verified results compared to those of an experiment in the literature. The results show that the baffle angle 60° causes the lowest thermohydraulic performance. Because in the angle range of 30 to 60° the heat transfer is less variable while the pressure loss increases sharply. At the baffle pitch of 40 mm, there is no reattachment point at the non-heated surface. At the angle of 90°, three eddies are formed around a baffle. The slope linear regression analysis yields that baffle height has the strongest effects on thermohydraulic performance followed by baffle pitch and baffle angle. Nanofluid pressure loss respectively increases with baffle height and baffle angle at the rate of 0.463675 and 0.0049607 while absorber plate temperature respectively decreases with the baffle height and baffle angle at the rate of -0.176746 and -0.001377. Flow patterns and isotherms of all the cases examined are presented and analyzed in this study.



2018 ◽  
Vol 1 (1) ◽  
pp. 293-297
Author(s):  
Sunhee Oh ◽  
Jeachul Jang ◽  
Chongpyo Cho ◽  
Yong Tae Kang ◽  
Seong-Ryong Park

The high-temperature steam is used in the fields of industrial, residential, and commercial. Especially, in case of high-temperature steam, it can be used to produce hydrogen and likewise it can be used to generate electricity in the field of power generation. However, the steam condition for producing hydrogen and the steam condition for producing electricity are different, it is considerably important to distribute the high-temperature steam in condition satisfying each demand. Moreover, the required pressure and the pressure loss of a steam distributor at the load side should be considered. Therefore, In this study, the numerical simulation using ANSYS fluent was performed by dividing into pipe A(4,000kPa at use of power generation system) and pipe B(300kPa at use of hydrogen production). In addition, it was simulated according to the variation of diameter of pipe B(20mm - 30mm) for analysis of a steam distribution techology. The pressure outlet that can be used in hydrogen production was about 300kPa approximately when the diameter of pipe B was 20mm. As a result, the distribution technology that is used hydrogen production and in the power generation system was obtained through numerical simulation in proposed condition.



Author(s):  
J. Meyer ◽  
L. Daróczy ◽  
D. Thévenin

In this report the diffusor geometry for a Pitot-Tube Jet pump (PTJ pump) is optimized, using 3D, steady CFD methods (software: ANSYS Fluent) as well as mesh morphing (software: Sculptor). The design point is Q = 16 m3/h. A complex optimization loop is set up, which takes geometric constraints, as well as manufacturing limits into account. The optimization is multi-objective and best practice guidelines are derived for future diffusor designs with respect to the reduction of total pressure losses and the diffusor displacement in the fluid of the rotor cavity. Both, advantages and disadvantages, are listed and evaluated.



2021 ◽  
Vol 327 ◽  
pp. 05001
Author(s):  
George Pitchurov ◽  
Detelin Markov ◽  
Iskra Simova ◽  
Rositsa Velichkova ◽  
Peter Stankov ◽  
...  

The distribution of PM2.5 around a thermal manikin with realistic female body shape in a naturally ventilated room has been modelled. The health risk (HR) due to inhalation of the PM2.5 has been quantified by integrating the pollutants mass flux over the boundaries of a virtual box around the mannequin’s head (the breathing zone). By the same approach HR is evaluated over the boundaries of another virtual box that surrounds the manikins body and defines the occupied zone. The paper focuses on the peculiarities of creating and meshing a virtual geometry, as well as on the application of user-defined functions (UDF) for defining a pollutant source within the room using Ansys Fluent modelling package.



Author(s):  
Н.Н. Чернов ◽  
А.В. Палий ◽  
А.В. Саенко ◽  
А.М. Маевский

AbstractAerodynamic flow past bodies of various geometrical shapes was studied, and the aerodynamic drag force was reduced through optimization of the body shape using a specially proposed method. The resulting drag force was compared to that for bodies formed by revolution of the profiles of well-known standard series. The study was performed using the Ansys Fluent software for isothermal laminar steady-state flows of incompressible fluid with constant density in a velocity range of 0–10 m/s. It is shown that the aerodynamic drag force for a body with the optimized shape is lower than analogous values for the bodies of revolution with Su-26 and NASA-0006 reference profiles. In comparison to the aerodynamic-drag-force level of 100% for the body of revolution with NASA-0006 profile, the drag force for Su-26 profile at airflow velocity of 10 m/s is 89.4%, while that for the proposed optimized body shape is 89.2%.



Sign in / Sign up

Export Citation Format

Share Document