Comparison of the effects of wet straining and refining on the fracture properties of paper

2002 ◽  
Vol 17 (1) ◽  
pp. 45-49 ◽  
Author(s):  
Gongde Zhang ◽  
Eero Hiltunen ◽  
Jaakko E. Laine ◽  
Hannu Paulapuro ◽  
Heikki Kettunen ◽  
...  
Keyword(s):  
1997 ◽  
Vol 473 ◽  
Author(s):  
David R. Clarke

ABSTRACTAs in other engineered structures, fracture occasionally occurs in integrated microelectronic circuits. Fracture can take a number of forms including voiding of metallic interconnect lines, decohesion of interfaces, and stress-induced microcracking of thin films. The characteristic feature that distinguishes such fracture phenomena from similar behaviors in other engineered structures is the length scales involved, typically micron and sub-micron. This length scale necessitates new techniques for measuring mechanical and fracture properties. In this work, we describe non-contact optical techniques for probing strains and a microscopic “decohesion” test for measuring interface fracture resistance in integrated circuits.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1745
Author(s):  
Waqas Ahmad ◽  
Mehran Khan ◽  
Piotr Smarzewski

Fracture characteristics were used to effectively evaluate the performance of fiber-reinforced cementitious composites. The fracture parameters provided the basis for crack stability analysis, service performance, safety evaluation, and protection. Much research has been carried out in the proposed study field over the previous two decades. Therefore, it was required to analyze the research trend from the available bibliometric data. In this study, the scientometric analysis and science mapping techniques were performed along with a comprehensive discussion to identify the relevant publication field, highly used keywords, most active authors, most cited articles, and regions with largest impact on the field of fracture properties of cement-based materials (CBMs). Furthermore, the characteristic of various fibers such as steel, polymeric, inorganic, and carbon fibers are discussed, and the factors affecting the fracture properties of fiber-reinforced CBMs (FRCBMs) are reviewed. In addition, future gaps are identified. The graphical representation based on the scientometric review could be helpful for research scholars from different countries in developing research cooperation, creating joint ventures, and exchanging innovative technologies and ideas.


Author(s):  
Pawan Verma ◽  
Jabir Ubaid ◽  
Andreas Schiffer ◽  
Atul Jain ◽  
Emilio Martínez-Pañeda ◽  
...  

AbstractExperiments and finite element (FE) calculations were performed to study the raster angle–dependent fracture behaviour of acrylonitrile butadiene styrene (ABS) thermoplastic processed via fused filament fabrication (FFF) additive manufacturing (AM). The fracture properties of 3D-printed ABS were characterized based on the concept of essential work of fracture (EWF), utilizing double-edge-notched tension (DENT) specimens considering rectilinear infill patterns with different raster angles (0°, 90° and + 45/− 45°). The measurements showed that the resistance to fracture initiation of 3D-printed ABS specimens is substantially higher for the printing direction perpendicular to the crack plane (0° raster angle) as compared to that of the samples wherein the printing direction is parallel to the crack (90° raster angle), reporting EWF values of 7.24 kJ m−2 and 3.61 kJ m−2, respectively. A relatively high EWF value was also reported for the specimens with + 45/− 45° raster angle (7.40 kJ m−2). Strain field analysis performed via digital image correlation showed that connected plastic zones existed in the ligaments of the DENT specimens prior to the onset of fracture, and this was corroborated by SEM fractography which showed that fracture proceeded by a ductile mechanism involving void growth and coalescence followed by drawing and ductile tearing of fibrils. It was further shown that the raster angle–dependent strength and fracture properties of 3D-printed ABS can be predicted with an acceptable accuracy by a relatively simple FE model considering the anisotropic elasticity and failure properties of FFF specimens. The findings of this study offer guidelines for fracture-resistant design of AM-enabled thermoplastics. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document