scholarly journals Volcanism and geochemistry of soil and vegetation cover of Kamchatka. Communication 2. Specificity of forming the elemental composition of volcanic soil in cold and humid conditions

Author(s):  
L. V. Zakharikhina ◽  
Yu. S. Litvinenko

Volcanic soils of Kamchatka have the low contents of most the chemical elements in relation to their overall prevalence in the soils of continents and volcanic soils of Europe. Relatively increased gross contents of elements typical for volcanic rocks of medium and basic composition: Na, Ca, Mg, Cd, Mn, Co, Cu, and steadily low contents of elements characteristic of acid volcanics: La, Ce, Pr, Nd, Nb, Hf, Tl, Rb and Th, is most characteristic of the soils of different areas of the peninsula. The existing in the past and currently observed different conditions of volcanism in the previously allocated soil areas of Kamchatka determine the diversity of the chemical composition of the soils in these territories.

Author(s):  
L. V. Zakharikhina ◽  
Yu. S. Litvinenko

Volcanic soils of Kamchatka have the low contents of most the chemical elements in relation to their overall prevalence in the soils of continents and volcanic soils of Europe. Relatively increased gross contents of elements typical for volcanic rocks of medium and basic composition: Na, Ca, Mg, Cd, Mn, Co, Cu, and steadily low contents of elements characteristic of acid volcanics: La, Ce, Pr, Nd, Nb, Hf, Tl, Rb and Th, is most characteristic of the soils of different areas of the peninsula. The existing in the past and currently observed different conditions of volcanism in the previously allocated soil areas of Kamchatka determine the diversity of the chemical composition of the soils in these territories.


2021 ◽  
pp. 51-56
Author(s):  
Yu. B. Sazonov ◽  
D. Yu. Ozherelkov ◽  
R. Sh. Latypov ◽  
E. E. Gorshkov

Possibility of determination of the fragments and articles made of different grades of steel aluminium and copper alloys and their affiliation to the common melt was examined via the methods of photoelectric spectral analysis based on composition of micro-impurities. Chemical elements with micro-impurities were revealed; they allow to determine affiliation of metal fragments to one melt. Ultimately possible deviations of micro-impurities within one melt were obtained. The technique allowing to establish affiliation of fragments to the common melt based on their elementary composition of micro-impurities with minimal amount of measurements was suggested based on the obtained results. The minimal geometric size of a sample available for analysis was determined; it allows to classify the examined fragments to one melt based on the results of investigation of expanded elementary composition of micro-impurities. Practical opportunities of this technique were displayed on the example of the alloys with different chemical composition.


2019 ◽  
Vol 11 (2) ◽  
pp. 37
Author(s):  
S. Batbileg ◽  
B. Purevsuren ◽  
M. Battsetseg ◽  
A. Ankhtuya ◽  
D. Batkhishig

Have been determined the technical characteristics and elemental composition of shells. The elemental composition of the shell was determined by a microanalytical method such as 5Е С2000 model CNH-analyzer. The pyrolysis of shells investigated by using a standard quartz retort (tube) at different heating temperatures and determined the yields of pyrolysis products such as hard residue, tar, pyrolytic water, and gas. As a result of these experiments have been determined that 30% hard residue, higher yield 13% of tar, can be obtained at heating temperature 500oC. Thermogravimetric analysis of shells carried out in TG/DTA7200, Hitachi, Japan model equipment. The shells’ ash chemical composition was first time determined by the X-ray diffractions powder, that it consists of significantly higher 40% these chemical elements including manganese, nickel, little zinc, sulfur, aluminum, phosphorus, iron, magnesium, and calcium. The solubility of purified pyrolysis tar of shells in hexane, benzene and dichloromethane were investigated by using silicagel column and the chemical composition of each fraction determined by using of GC/MS chromatography system. The FTIR spectra of shell and pyrolysis tar determined by using of a Nicolet 20-PC spectrometer. The porosity structure of activated pyrolysis hard residue determined by the SEM analysis.


Author(s):  
L. V. Zakharikhina ◽  
Yu. S. Litvinenko

Common geochemical features of volcanic near-surface ashes of Kamchatka (ashes located under the surface organogenic soil horizons) are their depletion by most chemical elements in comparison with average indicators for volcanic rocks of corresponding composition and relative enrichment of a limited range of elements, mainly typomorphic for main rocks (P, Mg V, Cr, Cu, Zn, Zr, Sb). Against the background of small variations in the contents of chemical elements in the ashes of different areas of the peninsula, the range of their priority elements is determined by their petrochemical composition. The active activity of the Northern group of volcanoes of Kamchatka causes a relatively high content of mobile forms of elements in the near-surface ashes of the Northern province in comparison with the ashes of the southern part of the peninsula.


Author(s):  
L. V. Zakharikhina ◽  
Yu. S. Litvinenko

Common geochemical features of volcanic near-surface ashes of Kamchatka (ashes located under the surface organogenic soil horizons) are their depletion by most chemical elements in comparison with average indicators for volcanic rocks of corresponding composition and relative enrichment of a limited range of elements, mainly typomorphic for main rocks (P, Mg V, Cr, Cu, Zn, Zr, Sb). Against the background of small variations in the contents of chemical elements in the ashes of different areas of the peninsula, the range of their priority elements is determined by their petrochemical composition. The active activity of the Northern group of volcanoes of Kamchatka causes a relatively high content of mobile forms of elements in the near-surface ashes of the Northern province in comparison with the ashes of the southern part of the peninsula.


Author(s):  
Philippe Fragu

The identification, localization and quantification of intracellular chemical elements is an area of scientific endeavour which has not ceased to develop over the past 30 years. Secondary Ion Mass Spectrometry (SIMS) microscopy is widely used for elemental localization problems in geochemistry, metallurgy and electronics. Although the first commercial instruments were available in 1968, biological applications have been gradual as investigators have systematically examined the potential source of artefacts inherent in the method and sought to develop strategies for the analysis of soft biological material with a lateral resolution equivalent to that of the light microscope. In 1992, the prospects offered by this technique are even more encouraging as prototypes of new ion probes appear capable of achieving the ultimate goal, namely the quantitative analysis of micron and submicron regions. The purpose of this review is to underline the requirements for biomedical applications of SIMS microscopy.Sample preparation methodology should preserve both the structural and the chemical integrity of the tissue.


2011 ◽  
Vol 20 (1) ◽  
Author(s):  
G. Barisevišius ◽  
G. Tautvaišienė ◽  
S. Berdyugina ◽  
Y. Chorniy ◽  
I. Ilyin

AbstractAbundances of 22 chemical elements, including the key elements and isotopes such as


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rasa Zalakeviciute ◽  
Katiuska Alexandrino ◽  
Yves Rybarczyk ◽  
Alexis Debut ◽  
Karla Vizuete ◽  
...  

Abstract Particulate matter (PM) is one of the key pollutants causing health risks worldwide. While the preoccupation for increased concentrations of these particles mainly depends on their sources and thus chemical composition, some regions are yet not well investigated. In this work the composition of chemical elements of atmospheric PM10 (particles with aerodynamic diameters ≤ 10 µm), collected at the urban and suburban sites in high elevation tropical city, were chemically analysed during the dry and wet seasons of 2017–2018. A large fraction (~ 68%) of PM10 composition in Quito, Ecuador is accounted for by water-soluble ions and 16 elements analysed using UV/VIS spectrophotometer and Inductively Coupled Plasma—Optical Emission Spectroscopy (ICP-OES). Hierarchical clustering analysis was performed to study a correlation between the chemical composition of urban pollution and meteorological parameters. The suburban area displays an increase in PM10 concentrations and natural elemental markers during the dry (increased wind intensity, resuspension of soil dust) season. Meanwhile, densely urbanized area shows increased total PM10 concentrations and anthropogenic elemental markers during the wet season, which may point to the worsened combustion and traffic conditions. This might indicate the prevalence of cardiovascular and respiratory problems in motorized areas of the cities in the developing world.


2014 ◽  
Vol 52 (4) ◽  
pp. 349-366 ◽  
Author(s):  
Annette Hahn ◽  
◽  
Pierre Kliem ◽  
Markus Oehlerich ◽  
Christian Ohlendorf ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document