scholarly journals Numerical Investigation of the Fracturing Effect Induced by Disturbing Stress of Hydrofracturing

2021 ◽  
Vol 9 ◽  
Author(s):  
Xinglong Zhao ◽  
Bingxiang Huang ◽  
Giovanni Grasselli

Fracturing induced by disturbing stress of hydraulic fracturing is the frontier common core scientific problem of reservoir stimulation of coal bed methane and shale gas. The finite-discrete element method, numerical calculation method, is used to analyze the basic law of shear failure and tension failure of natural fractures induced by the disturbing stress of the hydraulic fracture. The simulation results show that when natural fractures and other weak structures exist on the front or both sides of hydraulic fracture, the shear stress acting on the surface of natural fracture will increase until the natural fracture failure, which is caused by the disturbing stress of hydraulic fracturing. The seepage area on the front and both sides of the hydraulic fracture did not extend to the natural fracture while the natural fracture failure occurred. It indicates that the shear failure of natural fractures is induced by the disturbing stress of hydraulic fracturing. When the hydraulic fracture propagates to the natural fracture, the hydraulic tension fracture and disturbed shear fractures are connected and penetrated. As the fluid pressure within the natural fracture surface increases, the hydraulic fracture will continue to propagate through the natural fracture. Meanwhile, due to the action of fluid pressure, a tensile stress concentration will occur at the tip of the natural fracture, which will induce the airfoil tension failure of the natural fracture. With the increase of the principal stress difference, the range of the disturbing stress area and the peak value of the disturbing stress at the front of the hydraulic fracture tip increase, as well as the shear stress acting on the natural fracture surface. During the process of hydraulic fracture approaching natural fracture, the disturbing stress is easier to induce shear failure of natural fracture. With the increase of the cohesive force of natural fracture, the ability of natural fractures to resist shear failure increases. As the hydraulic fracture approaches natural fractures, the disturbing stress is more difficult to induce shear failure of natural fracture. This study will help to reveal the formation mechanism of the fracture network during hydraulic fracturing in the natural fractures developed reservoir.

2020 ◽  
Vol 10 (8) ◽  
pp. 3333-3345
Author(s):  
Ali Al-Rubaie ◽  
Hisham Khaled Ben Mahmud

Abstract All reservoirs are fractured to some degree. Depending on the density, dimension, orientation and the cementation of natural fractures and the location where the hydraulic fracturing is done, preexisting natural fractures can impact hydraulic fracture propagation and the associated flow capacity. Understanding the interactions between hydraulic fracture and natural fractures is crucial in estimating fracture complexity, stimulated reservoir volume, drained reservoir volume and completion efficiency. However, because of the presence of natural fractures with diffuse penetration and different orientations, the operation is complicated in naturally fractured gas reservoirs. For this purpose, two numerical methods are proposed for simulating the hydraulic fracture in a naturally fractured gas reservoir. However, what hydraulic fracture looks like in the subsurface, especially in unconventional reservoirs, remain elusive, and many times, field observations contradict our common beliefs. In this study, the hydraulic fracture model is considered in terms of the state of tensions, on the interaction between the hydraulic fracture and the natural fracture (45°), and the effect of length and height of hydraulic fracture developed and how to distribute induced stress around the well. In order to determine the direction in which the hydraulic fracture is formed strikethrough, the finite difference method and the individual element for numerical solution are used and simulated. The results indicate that the optimum hydraulic fracture time was when the hydraulic fracture is able to connect natural fractures with large streams and connected to the well, and there is a fundamental difference between the tensile and shear opening. The analysis indicates that the growing hydraulic fracture, the tensile and shear stresses applied to the natural fracture.


2015 ◽  
Vol 55 (1) ◽  
pp. 351
Author(s):  
Alireza Keshavarz ◽  
Alexander Badalyan ◽  
Raymond Johnson ◽  
Pavel Bedrikovetski

A method is proposed for enhancing the conductivity of micro-fractures and cleats around the hydraulically induced fractures in coal bed methane reservoirs. In this technique, placing ultra-fine proppant particles in natural fractures and cleats around hydraulically induced fractures at leak-off conditions keeps the coal cleats open during water-gas production, and this consequently increases the efficiency of hydraulic fracturing treatment. Experimental and mathematical studies for the stimulation of a natural cleat system around the main hydraulic fracture are conducted. In the experimental part, core flooding tests are performed to inject a flow of suspended particles inside the natural fractures of a coal sample. By placing different particle sizes and evaluating the concentration of placed particles, an experimental coefficient is found for optimum proppant placement in which the maximum permeability is achieved after proppant placement. In the mathematical modelling study, a laboratory-based mathematical model for graded proppant placement in naturally fractured rocks around a hydraulically induced fracture is proposed. Derivations of the model include an exponential form of the pressure-permeability dependence and accounts for permeability variation in the non-stimulated zone. The explicit formulae are derived for the well productivity index by including the experimentally found coefficient. Particle placement tests resulted in an almost three-times increase in coal permeability. The laboratory-based mathematical modelling, as performed for the field conditions, shows that the proposed method yields around a six-times increase in the productivity index.


2016 ◽  
Vol 56 (1) ◽  
pp. 225 ◽  
Author(s):  
Kunakorn Pokalai ◽  
David Kulikowski ◽  
Raymond L. Johnson ◽  
Manouchehr Haghighi ◽  
Dennis Cooke

Hydraulic fracturing in tight gas reservoirs has been performed in the Cooper Basin for decades in reservoirs containing high stress and pre-existing natural fractures, especially near faults. The hydraulic fracture is affected by factors such as tortuosity, high entry pressures, and the rock fabric including natural fractures. These factors cause fracture plane rotation and complexities, leading to fracture disconnection or reduced proppant placement during the treatment. In this paper, rock properties are estimated for a targeted formation using well logs to create a geomechanical model. Natural fracture and stress azimuths within the interval were interpreted from borehole image logs. The image log interpretations inferred that fissures are oriented 30–60° relative to the maximum horizontal stress. Next, diagnostic fracture injection test (DFIT) data was used with the poro-elastic stress equations to predict tectonic strains. Finally, the geomechanical model was history-matched with a planar 3D hydraulic fracturing simulator, and gave more insight into fracture propagation in an environment of pre-existing natural fractures. The natural fracture azimuths and calibrated geomechanical model are input into a framework to evaluate varying scenarios that might result based on a vertical or inclined well design. A well design is proposed based on the natural fracture orientation relative to the hydraulic fracture that minimises complexity to optimise proppant placement. In addition, further models and diagnostics are proposed to aid predicting the hydraulically induced fracture geometry, its impact on gas production, and optimising wellbore trajectory to positively interact with pre-existing natural fractures.


SPE Journal ◽  
2018 ◽  
Vol 24 (01) ◽  
pp. 302-318 ◽  
Author(s):  
Jixiang Huang ◽  
Joseph P. Morris ◽  
Pengcheng Fu ◽  
Randolph R. Settgast ◽  
Christopher S. Sherman ◽  
...  

Summary A fully coupled finite-element/finite-volume code is used to model 3D hydraulically driven fractures under the influence of strong vertical variations in closure stress interacting with natural fractures. Previously unknown 3D interaction mechanisms on fracture-height growth are revealed. Slipping of a natural fracture, triggered by elevated fluid pressure from an intersecting hydraulic fracture, can induce both increases and decreases of normal stress in the minimum-horizontal-stress direction, toward the center and tip of the natural fracture, respectively. Consequently, natural fractures are expected to be able to both encourage and inhibit the progress of hydraulic fractures propagating through stress barriers, depending on the relative locations between the intersecting fractures. Once the hydraulic fracture propagates above the stress barrier through the weakened segment near a favorably located natural fracture, a configuration consisting of two opposing fractures cuts the stress barrier from above and below. The fluid pressure required to break the stress barrier under such opposing-fracture configurations is substantially lower than that required by a fracture penetrating the same barrier from one side. Sensitivity studies of geologic conditions and operational parameters have also been performed to explore the feasibility of controlled fracture height. The interactions between hydraulic fractures, natural fractures, and geologic factors such as stress barriers in three dimensions are shown to be much more complex than in two dimensions. Although it is impossible to exhaust all the possible configurations, the ability of a 3D, fully coupled numerical model to naturally capture these processes is well-demonstrated.


2015 ◽  
Author(s):  
Hisanao Ouchi ◽  
Amit Katiyar ◽  
John T. Foster ◽  
Mukul M. Sharma

Abstract A novel fully coupled hydraulic fracturing model based on a nonlocal continuum theory of peridynamics is presented and applied to the fracture propagation problem. It is shown that this modeling approach provides an alternative to finite element and finite volume methods for solving poroelastic and fracture propagation problems and offers some clear advantages. In this paper we specifically investigate the interaction between a hydraulic fracture and natural fractures. Current hydraulic fracturing models remain limited in their ability to simulate the formation of non-planar, complex fracture networks. The peridynamics model presented here overcomes most of the limitations of existing models and provides a novel approach to simulate and understand the interaction between hydraulic fractures and natural fractures. The model predictions in two-dimensions have been validated by reproducing published experimental results where the interaction between a hydraulic fracture and a natural fracture is controlled by the principal stress contrast and the approach angle. A detailed parametric study involving poroelasticity and mechanical properties of the rock is performed to understand why a hydraulic fracture gets arrested or crosses a natural fracture. This analysis reveals that the poroelasticity, resulting from high fracture fluid leak-off, has a dominant influence on the interaction between a hydraulic fracture and a natural fracture. In addition, the fracture toughness of the rock, the toughness of the natural fracture, and the shear strength of the natural fracture also affect the interaction between a hydraulic fracture and a natural fracture. Finally, we investigate the interaction of multiple completing fractures with natural fractures in two-dimensions and demonstrate the applicability of the approach to simulate complex fracture networks on a field scale.


SPE Journal ◽  
2016 ◽  
Vol 21 (04) ◽  
pp. 1302-1320 ◽  
Author(s):  
Mark W. McClure ◽  
Mohsen Babazadeh ◽  
Sogo Shiozawa ◽  
Jian Huang

Summary We developed a hydraulic-fracturing simulator that implicitly couples fluid flow with the stresses induced by fracture deformation in large, complex, 3D discrete-fracture networks (DFNs). The code is efficient enough to perform field-scale simulations of hydraulic fracturing in DFNs containing thousands of fractures, without relying on distributed-memory parallelization. The simulator can describe propagation of hydraulic fractures and opening and shear stimulation of natural fractures. Fracture elements can open or slide, depending on their stress state, fluid pressure, and mechanical properties. Fracture sliding occurs in the direction of maximum resolved shear stress. Nonlinear empirical equations are used to relate normal stress, fracture opening, and fracture sliding to fracture aperture and transmissivity. Fluid leakoff is treated with a semianalytical 1D leakoff model that accounts for changing pressure in the fracture over time. Fracture propagation is modeled with linear-elastic fracture mechanics. The Forchheimer equation (Forchheimer 1901) is used to simulate non-Darcy pressure drop in the fractures because of high flow rate. A crossing criterion is implemented that predicts whether propagating hydraulic fractures will cross natural fractures or terminate against them, depending on orientation and stress anisotropy. Height containment of propagating hydraulic fractures between bedding layers can be modeled with a vertically heterogeneous stress field or by explicitly imposing hydraulic-fracture-height containment as a model assumption. Limitations of the model are that all fractures must be vertical; the mechanical calculations assume a linearly elastic and homogeneous medium; proppant transport is not included; and the locations of potentially forming hydraulic fractures must be specified in advance. Simulations were performed of a single propagating hydraulic fracture with and without leakoff to validate the code against classical analytical solutions. Field-scale simulations were performed of hydraulic fracturing in a densely naturally fractured formation. The simulations demonstrate how interaction with natural fractures in the formation can help explain the high net pressures, relatively short fracture lengths, and broad regions of microseismicity that are often observed in the field during stimulation in low-permeability formations, and that are not predicted by classical hydraulic-fracturing models. Depending on input parameters, our simulations predicted a variety of stimulation behaviors, from long hydraulic fractures with minimal leakoff into surrounding fractures to broad regions of dense fracturing with a branching network of many natural and newly formed fractures.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Fei Liu ◽  
Zhifeng Luo ◽  
Yu Sang ◽  
Liqiang Zhao ◽  
Changlin Zhou

There has been a growing consensus that preexisting natural fractures play an important role during stimulation. A novel fully coupled hydromechanical model using extended finite element method is proposed. This directly coupled scheme avoids the cumbersome process during calculating the fluid pressure in complicated fracture networks and translating into an equivalent nodal force. Numerical examples are presented to simulate the hydraulic fracture propagation paths for simultaneous multifracture treatments with properly using the stress shadow effects for horizontal wells and to reveal the deformation response and interaction mechanism between hydraulic induced fracture and nonintersected natural fractures at orthotropic and nonorthotropic angles. With the stress shadow effects, the induced hydraulic flexural fracture deflecting to wellbore rather than transverse fracture would be formed during the progress of simultaneous fracturing for a horizontal well. The coupled hydromechanical simulation reveals that the adjacent section to the intersection is opened and the others are closed for orthogonal natural fracture, while the nonorthogonal natural fracture is activated near the intersection firstly and along the whole section with increasing perturbed stresses. The results imply that the induced hydraulic fracture tends to cross orthotropic natural fracture, while it is prior to being arrested by the nonorthotropic natural fracture.


2017 ◽  
Vol 10 (1) ◽  
pp. 108-117 ◽  
Author(s):  
Ting Li ◽  
Ji-fang Wan

Background:Coal-bed methane productivity of single well is very low, and has been the bottleneck of the coal-bed methane industry in China.Objective:Although hydraulic fracturing is the only stimulation measure to develop CBM, it cannot increase production effectively, conventional fracturing method to create opening fractures should be improved. How to make good use of natural fractures, which are plentiful in CBM reservoirs, is also an important subject for hydraulic fracturing.Method:In this paper, the plastic deformation of coal rock is analyzed by harnessing a pseudo-Maxwell creep phenomenon, which is normally present in rock. The Kelvin-Voigt model is utilized to describe pseudo-plastic behavior of coal rock to determine pressurization and decay cyclic time for cyclic fracturing design. The mechanical requirement for shearing natural fractures is also analyzed, and shearing distance between the faces of natural fracture can be calculated by Westergaard stress function. Ultimately, the cyclic fracturing method is proposed according to theories about stress alteration and shearing of natural fractures. This method includes such periods as fracturing, pumping shut-down and so on.Conclusion:A complex fracture system can be created, which consists of opened and sheared fractures, then, large SRV(stimulated reservoir volume)and flowing drainage area can be acquired. In comparison with conventional fracturing method, this new way can make full use of the characteristics of CBM reservoirs and is more suitable to CBM. This method will lead to a significant increase of CBM production, and will achieve huge economic benefits.


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4477 ◽  
Author(s):  
Heng Zheng ◽  
Chunsheng Pu ◽  
CHOE TONG IL

Hydraulic fracturing is an essential technique for the development of shale gas, due to the low permeability in formation. Abundant natural fractures contained in a formation are indispensable for the development of a fracture network. In this paper, a damage-stress-seepage coupled hydraulic fracture expansion model, based on the extended finite element method, is established. The simulation results show that shear failure occurs when the hydraulic fracture interacts with a frictional natural fracture, while tensile failure occurs when it interacts with a cement natural fracture. Low interaction angles and high tensile strength of the rock are beneficial for the generation of a complex fracture network. Furthermore, under the same geological conditions and injection parameters, frictional natural fractures are more beneficial for the generation of a complex fracture network, when compared with cement natural fractures. This can not only effectively increase the propagation length of the natural fracture, but also effectively reduce its reactive resistance. This research is of great significance for the efficient exploitation of unconventional oil and gas resources.


2021 ◽  
Author(s):  
Ghazal Izadi ◽  
Colleen Barton ◽  
Pierre-Francois Roux ◽  
Tebis Llobet ◽  
Thiago Pessoa ◽  
...  

Abstract For tight reservoirs where hydraulic fracturing is required to enable sufficient fluid mobility for economic production, it is critical to understand the placement of induced fractures, their connectivity, extent, and interaction with natural fractures within the system. Hydraulic fracture initiation and propagation mechanisms are greatly influenced by the effect of the stress state, rock fabric and pre-existing features (e.g. natural fractures, faults, weak bedding/laminations). A pre-existing natural fracture system can dictate the mode, orientation and size of the hydraulic fracture network. A better understanding of the fracture growth phenomena will enhance productivity and also reduce the environmental footprint as less fractures can be created in a much more efficient way. Assessing the role of natural fractures and their interaction with hydraulic fractures in order to account for them in the hydraulic fracture model is achieved by leveraging microseismicity. In this study, we have used a combination of borehole and surface microseismic monitoring to get high vertical resolution locations and source mechanisms. 3D numerical modelling of hydraulic fracturing in complex geological conditions to predict fracture propagation is essential. 3D hydraulic fracturing simulation includes modelling capabilities of stimulation parameters, true 3D fracture propagation with near wellbore 3D complexity including a coupled DFN and the associated microseismic event generation capability. A 3D hydraulic fracture model was developed and validated by matching model predictions to microseismic observations. Microseismic source mechanisms are leveraged to determine the location and geometry of pre-existing features. In this study, we simulate a DFN based on the recorded seismicity of multi stage hydraulic fractures in a horizontal well. The advanced 3D hydraulic fracture modelling software can integrate effectively and efficiently data from a variety of multi-disciplinary sources and scales to create a subsurface characterization of the unconventional reservoir. By incorporating data from 3D seismic, LWD/wireline, core, completion/stimulation monitoring, and production, the software generates a holistic reservoir model embedded in a modular, multi-physics software platform of coupled numerical solvers that capture the fundamental physics of the processes being modelled. This study illustrates the importance of a powerful software tool that captures the necessary physics of stimulation to predict the effects of various completion designs and thereby ensure the most accurate representation of an unconventional reservoir response to a stimulation treatment.


Sign in / Sign up

Export Citation Format

Share Document