scholarly journals Enhancement of Damping Force of Classical Hydraulic Damper into Semi Active Damper using MR Approach

Author(s):  
Mane Shubham S. ◽  
Abhangrao Chaitanya R. ◽  
Kothawale Rajdeep R. ◽  
Mete Akash R. ◽  
Raut Laukik B.
2020 ◽  
Vol 12 (4) ◽  
Author(s):  
Jiahui Liang ◽  
Yinan Pei ◽  
Randy H. Ewoldt ◽  
Steven R. Tippett ◽  
Elizabeth T. Hsiao-Wecksler

Abstract Spasticity is a hypertonic muscle behavior commonly observed in patients with multiple sclerosis, cerebral palsy, stroke, etc. Clinical assessment for spasticity is done through passive stretch evaluations of various joints using qualitative clinical scales, such as the Modified Ashworth Scale (MAS). Due to the subjective nature of this evaluation method, diagnostic results can have poor reliability and inconsistency. A few research groups have developed electromechanical training simulators of upper arm spasticity with the intent of providing healthcare students practical training opportunities. This paper presents a novel, purely mechanical (nonpowered) training simulator as an alternative design approach. This passive design utilizes a hydraulic damper with selectable viscous effect to simulate the speed-dependent spastic muscle tone and a Scotch-Yoke linkage system to create the “catch-release” behavior of spasticity. An analytical fluid model was developed to systematically design the hydraulic damper. The error residuals between model prediction and experimental damping force were found within ±2.0 N and percent errors within ±10% across various testing speeds (i.e., 250, 500, 750, and 1000 mm/min). The performance of the fully assembled simulator was tested under slow (ω ≤ 60 deg/s), medium (60 deg/s < ω < 150 deg/s), and fast (ω ≥ 150 deg/s) stretch speeds, where ω is the joint angular speed. Preliminary bench-top results suggested the feasibility of replicating five distinct levels of spasticity behaviors (MAS levels 0–4), where resistive torque increased with higher stretch speed and peak resistive torque ranged from 1.3 to 6.7 N · m under the fast stretch speed.


2007 ◽  
Vol 07 (01) ◽  
pp. 129-149 ◽  
Author(s):  
MING-HSIANG SHIH ◽  
WEN-PEI SUNG

In the implementation of active or semi-active control systems, it is necessary to process the measured signals because they are not perfect in reality. At present, the current energy-dissipating method for controlling semi-active dampers is flawed because of some restrictions on processing and measuring the signals. Thus, a detection methodology of signal control is proposed in this research based on the direction of structural motion; a velocity estimating calculator is developed by using the least-square polynomial regression. Comparison of the analytical results and experimental data confirms that the proposed calculator is effective in predicting when to switch the moving direction of a semi-active damper. It can detect when the direction of the structure motion reverses as well as when to compensate the poor influence on the performance of a semi-active damper caused by the delayed response. Additionally, the noise of displacement signal will not affect the phase difference of predictive signals.


Author(s):  
Elliza Tri Maharani ◽  
U. Ubaidillah ◽  
Fitrian Imaduddin ◽  
K.M. Wibowo ◽  
Dewi Utami ◽  
...  

An experimental study was undertaken to evaluate the mathematical modelling of the magnetorheological (MR) damper featuring annular radial gap on its valve. The experiment was conducted using a fatigue dynamic test machine under particular excitation frequency and amplitude to get force-velocity and force-displament characteristics. Meanwhile, the mathematical modelling was done using quasi-steady modelling approach. Simulation using adaptive neuro fuzzy inference (ANFIS) Algorithm (Gaussian and Generalized Bell) were also carried out to portray the damping force-displacement modelling that is used to compare with the experimental results. The experimental characteristics show that amplitudes excitation and current input affect the result damping force value. The comparison of the experimental and mathematical results presented in this paper shows a significant difference in damping force value and that the quasi-steady modelling could not significantly approach the damping force-velocity results. Moreover, the semi-active damper is compared to the passive damper. The results show that a semi-active damper performs better than a passive damper because it only requires a little power. Based on the damping force-displacement modelling, it can be seen that Gaussian has a higher accuracy rather than Generalized Bell. Discussion on the energy dissipation and equivalent damping coefficient were also accomodated in this paper. Having completed in mathematical modelling and simulation, the damper would be ready for further work in-vehicle application that is development of control system.


2011 ◽  
Vol 474-476 ◽  
pp. 1423-1428 ◽  
Author(s):  
Yun Liu ◽  
Wei Jiang ◽  
Zhi Sheng Jing ◽  
Rui Ping Zhang ◽  
Zhong Min Liu

Magnetorheological fluid damper, coil current changes the magnetic field by adjusting the magnetic fluid flow in the damping channel, to achieve the shock absorber damping force control. Magnetorheological fluid damper based vehicle semi-active suspension control, with two degrees of freedom 1 / 2 Body Model controller model. By the control algorithm, derived optimal control law to determine the semi-active damper drive control.


1998 ◽  
Vol 122 (3) ◽  
pp. 498-506 ◽  
Author(s):  
K. J. Kitching ◽  
D. J. Cole ◽  
D. Cebon

This paper describes the development, modeling, and testing of a prototype, continuously variable semi-active damper for heavy vehicles. A simple proportional valve is used to generate the variable damping coefficient and the detrimental effects of the oil flow forces acting on the valve spool are studied. The force tracking performance of the damper is then examined under simple input conditions. The compliance of the hydraulic fluid is found to have a strong influence on the response of the damper. The performance of the prototype damper is investigated under realistic operating conditions using a Hardware-in-the-Loop (HiL) test rig, with a single wheel station vehicle model. The prototype damper displays a time lag of approximately 20 ms between the demanded and achieved damping force. The semi-active suspension is found to be most effective in reducing the vehicle body motion relative to the performance of an optimum passive suspension. [S0022-0434(00)00903-5]


2020 ◽  
Vol 15 (3) ◽  
pp. 37-48
Author(s):  
Zubair Rashid Wani ◽  
Manzoor Ahmad Tantray

The present research work is a part of a project was a semi-active structural control technique using magneto-rheological damper has to be performed. Magneto-rheological dampers are an innovative class of semi-active devices that mesh well with the demands and constraints of seismic applications; this includes having very low power requirements and adaptability. A small stroke magneto-rheological damper was mathematically simulated and experimentally tested. The damper was subjected to periodic excitations of different amplitudes and frequencies at varying voltage. The damper was mathematically modeled using parametric Modified Bouc-Wen model of magneto-rheological damper in MATLAB/SIMULINK and the parameters of the model were set as per the prototype available. The variation of mechanical properties of magneto-rheological damper like damping coefficient and damping force with a change in amplitude, frequency and voltage were experimentally verified on INSTRON 8800 testing machine. It was observed that damping force produced by the damper depended on the frequency as well, in addition to the input voltage and amplitude of the excitation. While the damping coefficient (c) is independent of the frequency of excitation it varies with the amplitude of excitation and input voltage. The variation of the damping coefficient with amplitude and input voltage is linear and quadratic respectively. More ever the mathematical model simulated in MATLAB was in agreement with the experimental results obtained.


Actuators ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 64
Author(s):  
Liankang Wei ◽  
Hongzhan Lv ◽  
Kehang Yang ◽  
Weiguang Ma ◽  
Junzheng Wang ◽  
...  

Purpose: We aim to provide a systematic methodology for the optimal design of MRD for improved damping capacity and dynamical adjustability in performing its damping function. Methods: A modified Bingham model is employed to model and simulate the MRD considering the MR fluid’s compressibility. The parameters that describe the structure of MRD and the property of the fluid are systematically examined for their contributions to the damping capacity and dynamically adjustability. A response surface method is employed to optimize the damping force and dynamically adjustable coefficient for a more practical setting related to the parameters. Results: The simulation system effectively shows the hysteretic characteristics of MRDs and shows our common sense understanding that the damping gap width and yoke diameter have significant effects on the damping characteristics of MRD. By taking a typical MRD device setup, optimal design shows an increase of the damping force by 33% and an increase of the dynamically adjustable coefficient by 17%. It is also shown that the methodology is applicable to other types of MDR devices. Conclusion: The compressibility of MR fluid is one of the main reasons for the hysteretic characteristics of MRD. The proposed simulation and optimization methods can effectively improve the MRD’s damping performance in the design stage.


Sign in / Sign up

Export Citation Format

Share Document