scholarly journals The treatment of meltwater retention in mass-balance parameterizations of the Greenland ice sheet

2000 ◽  
Vol 31 ◽  
pp. 133-140 ◽  
Author(s):  
Ives Janssens ◽  
Philippe Huybrechts

AbstractRetention of meltwater runoff by percolation and/or refreezing in the snowpack cannot be neglected when studying the surface mass balance of the Greenland ice sheet. In this paper, we make a detailed comparison of several treatments proposed in the literature to account for this process in large-scale mass-balance parameterizations. The melt on the Greenland ice sheet is calculated with a revised degree-day model using updated datasets of surface elevation and precipitation rate on a 5 km grid. Crucial model parameters are recalibrated by comparing mass-balance characteristics with available observations on a regional basis. We discuss the role of meltwater retention in the light of the overall mass balance of the Greenland ice sheet and its sensitivity to climatic change, and display patterns of effective-retention fractions for the various methods. As a main conclusion it appears that overall results are quite similar for the various models, but that meltwater retention has a large spatial variation not described by the simple treatments. Using the most comprehensive retention model, the sensitivity of the runoff is found to be +0.35 mm ˚C–1 of sea-level change per year. We also present a new map of the different zones (facies) that characterize the accumulation area of the Greenland ice sheet, which is useful for interpreting field data and calibrating satellite observations.

2018 ◽  
Vol 12 (9) ◽  
pp. 2981-2999 ◽  
Author(s):  
Jiangjun Ran ◽  
Miren Vizcaino ◽  
Pavel Ditmar ◽  
Michiel R. van den Broeke ◽  
Twila Moon ◽  
...  

Abstract. The Greenland Ice Sheet (GrIS) is currently losing ice mass. In order to accurately predict future sea level rise, the mechanisms driving the observed mass loss must be better understood. Here, we combine data from the satellite gravimetry mission Gravity Recovery and Climate Experiment (GRACE), surface mass balance (SMB) output of the Regional Atmospheric Climate Model v. 2 (RACMO2), and ice discharge estimates to analyze the mass budget of Greenland at various temporal and spatial scales. We find that the mean rate of mass variations in Greenland observed by GRACE was between −277 and −269 Gt yr−1 in 2003–2012. This estimate is consistent with the sum (i.e., -304±126 Gt yr−1) of individual contributions – surface mass balance (SMB, 216±122 Gt yr−1) and ice discharge (520±31 Gt yr−1) – and with previous studies. We further identify a seasonal mass anomaly throughout the GRACE record that peaks in July at 80–120 Gt and which we interpret to be due to a combination of englacial and subglacial water storage generated by summer surface melting. The robustness of this estimate is demonstrated by using both different GRACE-based solutions and different meltwater runoff estimates (namely, RACMO2.3, SNOWPACK, and MAR3.9). Meltwater storage in the ice sheet occurs primarily due to storage in the high-accumulation regions of the southeast and northwest parts of Greenland. Analysis of seasonal variations in outlet glacier discharge shows that the contribution of ice discharge to the observed signal is minor (at the level of only a few gigatonnes) and does not explain the seasonal differences between the total mass and SMB signals. With the improved quantification of meltwater storage at the seasonal scale, we highlight its importance for understanding glacio-hydrological processes and their contributions to the ice sheet mass variability.


2015 ◽  
Vol 9 (5) ◽  
pp. 1831-1844 ◽  
Author(s):  
B. Noël ◽  
W. J. van de Berg ◽  
E. van Meijgaard ◽  
P. Kuipers Munneke ◽  
R. S. W. van de Wal ◽  
...  

Abstract. We discuss Greenland Ice Sheet (GrIS) surface mass balance (SMB) differences between the updated polar version of the RACMO climate model (RACMO2.3) and the previous version (RACMO2.1). Among other revisions, the updated model includes an adjusted rainfall-to-snowfall conversion that produces exclusively snowfall under freezing conditions; this especially favours snowfall in summer. Summer snowfall in the ablation zone of the GrIS has a pronounced effect on melt rates, affecting modelled GrIS SMB in two ways. By covering relatively dark ice with highly reflective fresh snow, these summer snowfalls have the potential to locally reduce melt rates in the ablation zone of the GrIS through the snow-albedo-melt feedback. At larger scales, SMB changes are driven by differences in orographic precipitation following a shift in large-scale circulation, in combination with enhanced moisture to precipitation conversion for warm to moderately cold conditions. A detailed comparison of model output with observations from automatic weather stations, ice cores and ablation stakes shows that the model update generally improves the simulated SMB-elevation gradient as well as the representation of the surface energy balance, although significant biases remain.


1984 ◽  
Vol 30 (105) ◽  
pp. 131-139 ◽  
Author(s):  
L. W. Morland ◽  
G. D. Smith ◽  
G. S. Boulton

AbstractThe sliding law is defined as a basal boundary condition for the large-scale bulk ice flow, relating the tangential tractionτb, overburden pressurepb, and tangential velocityubon a smoothed-out mean bed contour. This effective bed is a lower boundary viewed on the scale of the bulk ice flow and is not the physical ice/rock or sediment interface. The sliding relation reflects on the same scale the complex motion taking place in the neighbourhood of the physical interface. The isothermal steady-state ice-sheet analysis of Morland and Johnson (1980, 1982) is applied to known surface profiles from the Greenland ice sheet and Devon Island ice cap, with their corresponding mass-balance distributions, to determineτb,pb, andubfor each case. These basal estimates are used in turn to construct, using least-squares correlation, polynomial representations for an overburden dependenceλ(pb) in the adopted form of sliding lawτb═λ(pb)ub1/mwithm ≥1.The two different data sets determine functionsλ(pb) of very different magnitudes, reflecting very different basal conditions. A universal sliding law must therefore contain more general dependence on basal conditions, but the two relations determined appear to describe the two extremes. Hence use of both relations in turn to determine profiles compatible with given mass-balance distributions can be expected to yield extremes of the possible profiles, and further to show the sensitivity of profile form to variation of the sliding relation. The theory is designed as a basis for reconstruction of former ice sheets and their dynamics which are related to the two fundamental determinants of surface mass balance and basal boundary condition.


2020 ◽  
Author(s):  
Xavier Fettweis ◽  

<p>The Greenland Ice Sheet (GrIS) mass loss has been accelerating at a rate of about 20 +/- 10 Gt/yr<sup>2</sup> since the end of the 1990's, with around 60% of this mass loss directly attributed to enhanced surface meltwater runoff. However, in the climate and glaciology communities, different approaches exist on how to model the different surface mass balance (SMB) components using: (1) complex physically-based climate models which are computationally expensive; (2) intermediate complexity energy balance models; (3) simple and fast positive degree day models which base their inferences on statistical principles and are computationally highly efficient. Additionally, many of these models compute the SMB components based on different spatial and temporal resolutions, with different forcing fields as well as different ice sheet topographies and extents, making inter-comparison difficult. In the GrIS SMB model intercomparison project (GrSMBMIP) we address these issues by forcing each model with the same data (i.e., the ERA-Interim reanalysis) except for two global models for which this forcing is limited to the oceanic conditions, and at the same time by interpolating all modelled results onto a common ice sheet mask at 1 km horizontal resolution for the common period 1980-2012. The SMB outputs from 13 models are then compared over the GrIS to (1) SMB estimates using a combination of gravimetric remote sensing data from GRACE and measured ice discharge, (2) ice cores, snow pits, in-situ SMB observations, and (3) remotely sensed bare ice extent from MODerate-resolution Imaging Spectroradiometer (MODIS). Our results reveal that the mean GrIS SMB of all 13 models has been positive between 1980 and 2012 with an average of 340 +/- 112 Gt/yr, but has decreased at an average rate of -7.3 Gt/yr<sup>2</sup> (with a significance of 96%), mainly driven by an increase of 8.0 Gt/yr<sup>2</sup> (with a significance of 98%) in meltwater runoff. Spatially, the largest spread among models can be found around the margins of the ice sheet, highlighting the need for accurate representation of the GrIS ablation zone extent and processes driving the surface melt. In addition, a higher density of in-situ SMB observations is required, especially in the south-east accumulation zone, where the model spread can reach 2 mWE/yr due to large discrepancies in modelled snowfall accumulation. Overall, polar regional climate models (RCMs) perform the best compared to observations, in particular for simulating precipitation patterns. However, other simpler and faster models have biases of same order than RCMs with observations and remain then useful tools for long-term simulations. It is also interesting to note that the ensemble mean of the 13 models produces the best estimate of the present day SMB relative to observations, suggesting that biases are not systematic among models. Finally, results from MAR forced by ERA5 will be added in this intercomparison to evaluate the added value of using this new reanalysis as forcing vs the former ERA-Interim reanalysis (used in SMBMIP). </p>


2017 ◽  
Author(s):  
Sebastian H. Mernild ◽  
Glen E. Liston ◽  
Andrew P. Beckerman ◽  
Jacob C. Yde

Abstract. Knowledge about variations in runoff from Greenland to adjacent fjords and seas is important for the hydrochemistry and ocean research communities to understand the link between terrestrial and marine Arctic environments. Here, we simulate the Greenland Ice Sheet (GrIS) surface mass balance (SMB), including refreezing and retention, and runoff together with catchment-scale runoff from the entire Greenland landmass (n = 3,272 simulated catchments) throughout the 35-year period 1979–2014. SnowModel/HydroFlow was applied at 3-h intervals to resolve the diurnal cycle and at 5-km horizontal grid increments using ERA-Interim (ERA-I) reanalysis atmospheric forcing. Simulated SMB was low compared to earlier studies, whereas the GrIS surface conditions and precipitation were similar. Variations in meteorological and surface ice and snow cover conditions influenced the seasonal variability in simulated catchment runoff; variations in the GrIS internal drainage system were assumed negligible and a time-invariant digital elevation model was applied. Approximately 80 % of all catchments showed increasing runoff trends over the 35 years, with on average relatively high and low catchment-scale runoff from the SW and N parts of Greenland, respectively. Outputs from an Empirical Orthogonal Function (EOF) analysis were combined with cross-correlations indicating a direct link (zero lag time) between modeled catchment-scale runoff and variations in the large-scale atmospheric circulation indices North Atlantic Oscillation (NAO) and Atlantic Multidecadal Oscillation (AMO). This suggests that natural variabilities in AMO and NAO constitute major controls on catchment-scale runoff variations in Greenland.


2018 ◽  
Author(s):  
Leonardus van Kampenhout ◽  
Alan M. Rhoades ◽  
Adam R. Herrington ◽  
Colin M. Zarzycki ◽  
Jan T. M. Lenaerts ◽  
...  

Abstract. In this study, the resolution dependence of the simulated Greenland Ice Sheet surface mass balance in the variable-resolution Community Earth System Model (VR-CESM) is investigated. Coupled atmosphere-land simulations are performed on three regionally refined grids over Greenland at 1° (~111 km), 0.5°(~55 km), and 0.25° (~28 km), maintaining a quasi-uniform resolution of 1° (~111 km) over the rest of the globe. The SMB in the accumulation zone is significantly improved compared to airborne radar and in-situ observations, with a general wetting at the margins and a drying in the interior GrIS. Total precipitation decreases with resolution, which is in line with best-available regional climate model results. In the ablation zone, VR-CESM starts developing a positive SMB bias in some locations. Potential driving mechanisms are proposed, amongst which are diversions in large scale circulation, changes in cloud cover, and changes in summer snowfall. Overall, our results demonstrate that VR-CESM is a viable new tool in the cryospheric sciences and can be used to dynamically downscale future scenarios and/or be interactively coupled to dynamical ice sheet models.


2014 ◽  
Vol 8 (1) ◽  
pp. 1151-1189 ◽  
Author(s):  
R. Calov ◽  
A. Robinson ◽  
M. Perrette ◽  
A. Ganopolski

Abstract. In this paper, we propose a new sub-grid scale parameterization for the ice discharge into the ocean through outlet glaciers and inspect the role of different observational and palaeo constraints for the choice of an optimal set of model parameters. This parameterization was introduced into the polythermal ice-sheet model SICOPOLIS, which is coupled to the regional climate model of intermediate complexity REMBO. Using the coupled model, we performed large ensemble simulations over the last two glacial cycles. We exploit two major parameters: a melt parameter in the surface melt scheme of REMBO and an ice discharge parameter in our parameterization of ice discharge. Our constraints are the present-day Greenland ice sheet surface elevation, surface mass balance partition (ratio between ice discharge and total precipitation) and the Eemian interglacial elevation drop relative to present-day in the vicinity of the NEEM ice core. We show that the ice discharge parameterization enables us to simulate both the correct ice-sheet shape and mass balance partition at the same time without explicitly resolving the Greenland outlet glaciers. For model verification, we compare simulated total and sectoral ice discharge with those from other findings, including observations. For the model versions, which are inside the range of observational and palaeo constraints, our simulated Greenland ice sheet contribution to Eemian sea level rise relative to present-day amounts to 1.4 m on average (in the range of 0.6 and 2.5 m).


2009 ◽  
Vol 50 (50) ◽  
pp. 178-184 ◽  
Author(s):  
L.M. Wake ◽  
P. Huybrechts ◽  
J.E. Box ◽  
E. Hanna ◽  
I. Janssens ◽  
...  

AbstractMass loss from the Greenland ice sheet over the past decade has caused the impression that the ice sheet has been behaving anomalously to the warming of the 1990s. We have reconstructed the recent (1866–2005) surface mass-balance (SMB) history of the Greenland ice sheet on a 5 × 5 km grid using a runoff-retention model based on the positive degree-day method. The model is forced with new datasets of temperature and precipitation patterns dating back to 1866.We use an innovative method to account for the influence of year-on-year surface elevation changes on SMB estimates and have found this effect to be minor. All SMB estimates are made relative to the 1961–90 average SMB and we compare annual SMB estimates from the period 1995–2005 to a similar period in the past (1923–33) where SMB was comparable, and conclude that the present-day changes are not exceptional within the last 140 years. Peripheral thinning has dominated the SMB response during the past decade, as in 1923–33, but we also show that thinning was not restricted to the margins during this earlier period.


2015 ◽  
Vol 9 (1) ◽  
pp. 179-196 ◽  
Author(s):  
R. Calov ◽  
A. Robinson ◽  
M. Perrette ◽  
A. Ganopolski

Abstract. In this paper, we propose a new sub-grid scale parameterization for the ice discharge into the ocean through outlet glaciers and inspect the role of different observational and palaeo constraints for the choice of an optimal set of model parameters. This parameterization was introduced into the polythermal ice-sheet model SICOPOLIS, which is coupled to the regional climate model of intermediate complexity REMBO. Using the coupled model, we performed large ensemble simulations over the last two glacial cycles by varying two major parameters: a melt parameter in the surface melt scheme of REMBO and a discharge scaling parameter in our parameterization of ice discharge. Our empirical constraints are the present-day Greenland ice sheet surface elevation, the surface mass balance partition (ratio between total ice discharge and total precipitation) and the Eemian interglacial elevation drop relative to present day in the vicinity of the NEEM ice core. We show that the ice discharge parameterization enables us to simulate both the correct ice-sheet shape and mass balance partition at the same time without explicitly resolving the Greenland outlet glaciers. For model verification, we compare the simulated total and sectoral ice discharge with other estimates. For the model versions that are consistent with the range of observational and palaeo constraints, our simulated Greenland ice sheet contribution to Eemian sea-level rise relative to present-day amounts to 1.4 m on average (in the range of 0.6 and 2.5 m).


2010 ◽  
Vol 6 (4) ◽  
pp. 1551-1588 ◽  
Author(s):  
A. Robinson ◽  
R. Calov ◽  
A. Ganopolski

Abstract. Using a new approach to force an ice sheet model, we performed an ensemble of simulations of the Greenland Ice Sheet evolution during the last two glacial cycles, with emphasis on the Eemian Interglacial. This ensemble was generated by perturbing four key parameters in the coupled regional climate – ice sheet model and by introducing additional uncertainty in the prescribed "background" climate change. Sensitivity of the surface melt model to climate change was determined to be the dominant driver of ice sheet instability, as reflected by simulated ice sheet loss during the Eemian Interglacial period. To eliminate unrealistic parameter combinations, constraints from present-day and paleo information were applied. The constraints include (i) the diagnosed present-day surface mass balance partition between surface melting and calving, (ii) the modeled present-day elevation at GRIP; and (iii) the modeled elevation reduction at GRIP during the Eemian. Using these three constraints, a total of 270 simulations with 90 different model realizations were filtered down to 47 simulations and 20 model realizations considered valid. The paleo constraint eliminated more sensitive melt parameter values, in agreement with the surface mass balance partition assumption. The constrained simulations result in a range of Eemian ice loss of 0.4–4.1 m sea level (m.s.l.) equivalent, with a more likely value of about 4.1 m.s.l. if the GRIP δ18O isotope record can be considered an accurate proxy for the precipitation-weighted annual mean temperatures.


Sign in / Sign up

Export Citation Format

Share Document