scholarly journals Spatial representativity of air-temperature information from instrumental and ice-core-based isotope records in the European Alps

2002 ◽  
Vol 35 ◽  
pp. 157-161 ◽  
Author(s):  
Wolfgang Schöner ◽  
Ingeborg Auer ◽  
Reinhard Böhm ◽  
Lothar Keck ◽  
Dietmar Wagenbach

AbstractSpatial correlations between Alpine high-elevation and European low-elevation instrumental air temperatures are computed to assess the spatial representativity of a high-Alpine ice-core isotope proxy temperature record. the correlation analyses indicate that air-temperature records at Alpine ice-core drill sites are representative for central Europe, particularly in summer. While Alpine ice cores generally show a large scattering in the conserved section of the year, long-term records from low-accumulation sites consist almost solely of summer precipitation and thus reflect isotope proxy summer-temperature variability. However, correlation between seasonal and annual instrumental air temperature indicates that summer temperature variability provides an adequate approach to annual temperature variability. Comparison of long-term ice-core δ18O records from Colle Gnifetti (4450ma.s.l.), Monte Rosa, Western Alps, with local instrumental summer temperatures inferred from an instrumental network shows good agreement in the long-term scale. Thus Alpine long-term ice-core δ18O records are representative for central European air-temperature variability.

2017 ◽  
Author(s):  
Pascal Bohleber ◽  
Tobias Erhardt ◽  
Nicole Spaulding ◽  
Helene Hoffmann ◽  
Hubertus Fischer ◽  
...  

Abstract. Among ice core drilling sites in the European Alps, the Colle Gnifetti (CG) glacier saddle is the only one to offer climate records back to at least 1000 years. This unique long-term archive is the result of an exceptionally low net accumulation driven by wind erosion and rapid annual layer thinning. To-date, however, the full exploitation of the CG time series has been hampered by considerable dating uncertainties and the seasonal summer bias in snow preservation. Using a new core drilled in 2013 we extend annual layer counting, for the first time at CG, over the last 1000 years and add additional constraints to the resulting age scale from radiocarbon dating. Based on this improved age scale, and using a multi-core approach with a neighboring ice core, we explore the potential for reconstructing long-term temperature variability from the stable water isotope and mineral dust proxy time series. A high and potentially non-stationary isotope/temperature sensitivity limits the quantitative use of the stable isotope variability thus far. However, we find substantial agreement comparing the mineral dust proxy Ca2+ with instrumental temperature. The temperature-related variability in the Ca2+ record is explained based on the temperature-dependent snow preservation bias combined with the advection of dust-rich air masses coinciding with warm temperatures. We show that using the Ca2+ trends for a quantitative temperature reconstruction results in good agreement with instrumental temperature and the latest summer temperature reconstruction derived from other archives covering the last 1000 years. This includes a Little Ice Age cold period as well as a medieval climate anomaly. In particular, part of the medieval climate period around 1100–1200 AD stands out through an increased occurrence of dust events, potentially resulting from a relative increase in meridional flow and dry conditions over the Mediterranean.


1990 ◽  
Vol 14 ◽  
pp. 343-344 ◽  
Author(s):  
Chester C. Langway ◽  
Hitoshi Shoji

The layered sequences of melt features preserved in inland polar ice sheets provide valuable proxy data on past variations in summer temperature. A continuous detailed light-table examination was made on the 2037 m-deep Dye 3 ice core immediately after core recovery. Melt features are products of high air temperatures or solar insolation which occur only at or near the snow surface during summer months. A correlation is made between these features and the extent and intensity of summer temperatures. Care must be exercised to identify and distinguish between all mm-thick radiation crusts and wind crusts contained in the record. The absence or presence of these discrete features serve respectively as indicators of total summer cloud cover and the extent of winter storm activity although they are difficult to differentiate from only light-table observations. In this analysis both thin radiation crusts and wind crusts are not in themselves significant indicators of long-term temperature trends, but may serve as incipient subsurface horizons or barrier crusts for the formation of thicker ice melt features caused by downward melt percolation during elevated surface temperature conditions.More than 10 000 individual melt features, including ice layers, ice lenses and ice wedges (but excluding ice glands) were measured down to a depth of 1278 m; below this depth transformation of air bubbles to transparent air hydrate inclusions occurs (Shoji and Langway, 1987) and the megascopic melt features become obscure. The melt-feature data extends back to 1883 B.c. or approximately 3900 years B.P., based on the accurate time scale of continuous δ18O measurements (Dansgaard and others, 1985) For the entire core profile investigated the annual melt percentage is 5.7. Individual melt features range in thickness from 1 mm to 100 mm. A mean value for melt-feature thickness was calculated for continuous 30-year time intervals to consider the general long-term summer temperature trends with corrections made for progressive annual accumulation layer thinning due to ice flow.Since the AMP parameter includes noise from radiation and wind crusts it appears that the simple average of melt-feature thickness per longer time-units is a better indication of air temperature paleodata. The average melt-feature thickness is 1.2 cm. The complete curve obtained shows a higher thickness value of about 1.5 cm for the period 1800 B.C. to 1300 B.C. A lower, almost constant thickness value of about 1cm is shown for the period 1000 B.c. to 1800 A.D., with a slight reduction in thickness recorded around 200 B.C., 400 A.D. and 1600 A.D. These long-term trends are coherent with those recorded in the δ18O profile for the same ice core.


Author(s):  
Pascal Bohleber

The European Alps feature a unique situation with the densest network of long-term instrumental climate observations and anthropogenic emission sources located in the immediate vicinity of glaciers suitable for ice core studies. To archive atmospheric changes in an undisturbed sequence of firn and ice layers, ice core drilling sites require temperatures low enough to minimize meltwater percolation. In the Alps, this implies a restriction to the highest summit glaciers of comparatively small horizontal and vertical extension (i.e., with typical ice thickness not much exceeding 100 m). As a result, Alpine ice cores offer either high-resolution or long-term records, depending on the net snow accumulation regime of the drilling site. High-accumulation Alpine ice cores have been used with great success to study the anthropogenic influence on aerosol-related atmospheric impurities over the last 100 years or so. However, respective long-term reconstructions (i.e., substantially exceeding the instrumental era) from low-accumulation sites remain comparatively sparse. Accordingly, deciphering Alpine ice cores as long-term climate records deserves special emphasis. Certain conditions must exist for Alpine ice cores to serve as climate archives, and this is important in particular regarding the challenges and achievements that have significance for ice cores from other mountain areas: (a) a reliable chronology is the fundamental prerequisite for interpreting any ice core proxy time series. Advances in radiometric ice dating and annual layer counting offer the tools to crucially increase dating precision in the preinstrumental era. (b) Glacier flow effects and spatio-seasonal snow deposition variability challenge linking the ice core proxy signals to the respective atmospheric variability (e.g., of temperature, mineral dust, and impurity concentrations). Here, assistance comes from combining multiple ice cores from one site and from complementary meteorological, glaciological, and geophysical surveys. (c) As Alpine ice cores continue to advance their contribution to Holocene climate science, exploring the link to instrumental, historical, and other natural climate archives gains increasing importance.


2021 ◽  
Author(s):  
Dieter R. Tetzner ◽  
Elizabeth R. Thomas ◽  
Claire S. Allen ◽  
Mackenzie M. Grieman

Abstract. The Southern Hemisphere Westerly Winds are among the most important drivers of recently observed environmental changes in West Antarctica. However, the lack of long-term wind records in this region hinders our ability to assess the long-term context of these variations. Ice core proxy records yield valuable information about past environmental changes, although current proxies present limitations when aiming to reconstruct past winds. Here we present the first regional wind study based on the novel use of diatoms preserved in Antarctic ice cores. We assess the temporal variability in diatom abundance and its relation to regional environmental parameters spanning a 20-year period across three sites in the southern Antarctic Peninsula and Ellsworth Land, Antarctica. Correlation analyses reveal that the temporal variability of diatom abundance from high elevation ice core sites is driven by changes in wind strength over the core of the Southern Hemisphere Westerly Wind belt. Validating the use of diatoms preserved in ice cores from the Southern Antarctic Peninsula and Ellsworth Land as a proxy for reconstructing past variations in wind strength over the Pacific sector of the Southern Hemisphere Westerly Wind belt.


1990 ◽  
Vol 14 ◽  
pp. 343-344 ◽  
Author(s):  
Chester C. Langway ◽  
Hitoshi Shoji

The layered sequences of melt features preserved in inland polar ice sheets provide valuable proxy data on past variations in summer temperature. A continuous detailed light-table examination was made on the 2037 m-deep Dye 3 ice core immediately after core recovery. Melt features are products of high air temperatures or solar insolation which occur only at or near the snow surface during summer months. A correlation is made between these features and the extent and intensity of summer temperatures. Care must be exercised to identify and distinguish between all mm-thick radiation crusts and wind crusts contained in the record. The absence or presence of these discrete features serve respectively as indicators of total summer cloud cover and the extent of winter storm activity although they are difficult to differentiate from only light-table observations. In this analysis both thin radiation crusts and wind crusts are not in themselves significant indicators of long-term temperature trends, but may serve as incipient subsurface horizons or barrier crusts for the formation of thicker ice melt features caused by downward melt percolation during elevated surface temperature conditions. More than 10 000 individual melt features, including ice layers, ice lenses and ice wedges (but excluding ice glands) were measured down to a depth of 1278 m; below this depth transformation of air bubbles to transparent air hydrate inclusions occurs (Shoji and Langway, 1987) and the megascopic melt features become obscure. The melt-feature data extends back to 1883 B.c. or approximately 3900 years B.P., based on the accurate time scale of continuous δ18O measurements (Dansgaard and others, 1985) For the entire core profile investigated the annual melt percentage is 5.7. Individual melt features range in thickness from 1 mm to 100 mm. A mean value for melt-feature thickness was calculated for continuous 30-year time intervals to consider the general long-term summer temperature trends with corrections made for progressive annual accumulation layer thinning due to ice flow. Since the AMP parameter includes noise from radiation and wind crusts it appears that the simple average of melt-feature thickness per longer time-units is a better indication of air temperature paleodata. The average melt-feature thickness is 1.2 cm. The complete curve obtained shows a higher thickness value of about 1.5 cm for the period 1800 B.C. to 1300 B.C. A lower, almost constant thickness value of about 1cm is shown for the period 1000 B.c. to 1800 A.D., with a slight reduction in thickness recorded around 200 B.C., 400 A.D. and 1600 A.D. These long-term trends are coherent with those recorded in the δ18O profile for the same ice core.


2012 ◽  
Vol 8 (3) ◽  
pp. 1109-1125 ◽  
Author(s):  
R. Uemura ◽  
V. Masson-Delmotte ◽  
J. Jouzel ◽  
A. Landais ◽  
H. Motoyama ◽  
...  

Abstract. A single isotope ratio (δD or δ18O) of water is widely used as an air-temperature proxy in Antarctic ice core records. These isotope ratios, however, do not solely depend on air-temperature but also on the extent of distillation of heavy isotopes out of atmospheric water vapor from an oceanic moisture source to a precipitation site. The temperature changes at the oceanic moisture source (Δ Tsource) and at the precipitation site (Δ Tsite) can be retrieved by using deuterium-excess (d) data. A new d record from Dome Fuji, Antarctica spanning the past 360 000 yr is presented and compared with records from Vostok and EPICA Dome C ice cores. In previous studies, to retrieve Δ Tsource and Δ Tsite information, different linear regression equations were proposed using theoretical isotope distillation models. A major source of uncertainty lies in the coefficient of regression, βsite which is related to the sensitivity of d to Δ Tsite. We show that different ranges of temperature and selections of isotopic model outputs may increase the value of βsite by more than a factor of two. To explore the impacts of this coefficient on reconstructed temperatures, we apply for the first time the exact same methodology to the isotope records from the three Antarctica ice cores. We show that uncertainties in the βsite coefficient strongly affect (i) the glacial–interglacial magnitude of Δ Tsource; (ii) the imprint of obliquity in Δ Tsource and in the site-source temperature gradient. By contrast, we highlight the robustness of Δ Tsite reconstruction using water isotopes records.


2016 ◽  
Vol 12 (2) ◽  
pp. 201-211 ◽  
Author(s):  
W. An ◽  
S. Hou ◽  
W. Zhang ◽  
Y. Wang ◽  
Y. Liu ◽  
...  

Abstract. Stable oxygen isotopic records in ice cores provide valuable information about past temperature, especially for regions with scarce instrumental measurements. This paper presents the δ18O result of an ice core drilled to bedrock from Mt. Zangser Kangri (ZK), a remote area on the northern Tibetan Plateau (TP). We reconstructed the temperature series for 1951–2008 from the δ18O records. In addition, we combined the ZK δ18O records with those from three other ice cores in the northern TP (Muztagata, Puruogangri, and Geladaindong) to reconstruct a regional temperature history for the period 1951–2002 (RTNTP). The RTNTP showed significant warming at 0.51 ± 0.07 °C (10 yr)−1 since 1970, a higher rate than the trend of instrumental records of the northern TP (0.43 ± 0.08 °C (10 yr)−1) and the global temperature trend (0.27 ± 0.03°C (10 yr)−1) at the same time. In addition, the ZK temperature record, with extra length until 2008, seems to suggest that the rapid elevation-dependent warming continued for this region during the last decade, when the mean global temperature showed very little change. This could provide insights into the behavior of the recent warming hiatus at higher elevations, where instrumental climate records are lacking.


2006 ◽  
Vol 2 (2) ◽  
pp. 145-165 ◽  
Author(s):  
V. Masson-Delmotte ◽  
G. Dreyfus ◽  
P. Braconnot ◽  
S. Johnsen ◽  
J. Jouzel ◽  
...  

Abstract. Ice cores provide unique archives of past climate and environmental changes based only on physical processes. Quantitative temperature reconstructions are essential for the comparison between ice core records and climate models. We give an overview of the methods that have been developed to reconstruct past local temperatures from deep ice cores and highlight several points that are relevant for future climate change. We first analyse the long term fluctuations of temperature as depicted in the long Antarctic record from EPICA Dome C. The long term imprint of obliquity changes in the EPICA Dome C record is highlighted and compared to simulations conducted with the ECBILT-CLIO intermediate complexity climate model. We discuss the comparison between the current interglacial period and the long interglacial corresponding to marine isotopic stage 11, ~400 kyr BP. Previous studies had focused on the role of precession and the thresholds required to induce glacial inceptions. We suggest that, due to the low eccentricity configuration of MIS 11 and the Holocene, the effect of precession on the incoming solar radiation is damped and that changes in obliquity must be taken into account. The EPICA Dome C alignment of terminations I and VI published in 2004 corresponds to a phasing of the obliquity signals. A conjunction of low obliquity and minimum northern hemisphere summer insolation is not found in the next tens of thousand years, supporting the idea of an unusually long interglacial ahead. As a second point relevant for future climate change, we discuss the magnitude and rate of change of past temperatures reconstructed from Greenland (NorthGRIP) and Antarctic (Dome C) ice cores. Past episodes of temperatures above the present-day values by up to 5°C are recorded at both locations during the penultimate interglacial period. The rate of polar warming simulated by coupled climate models forced by a CO2 increase of 1% per year is compared to ice-core-based temperature reconstructions. In Antarctica, the CO2-induced warming lies clearly beyond the natural rhythm of temperature fluctuations. In Greenland, the CO2-induced warming is as fast or faster than the most rapid temperature shifts of the last ice age. The magnitude of polar temperature change in response to a quadrupling of atmospheric CO2 is comparable to the magnitude of the polar temperature change from the Last Glacial Maximum to present-day. When forced by prescribed changes in ice sheet reconstructions and CO2 changes, climate models systematically underestimate the glacial-interglacial polar temperature change.


2006 ◽  
Vol 43 ◽  
pp. 49-60 ◽  
Author(s):  
Vladimir B. Aizen ◽  
Elena M. Aizen ◽  
Daniel R. Joswiak ◽  
Koji Fujita ◽  
Nozomu Takeuchi ◽  
...  

AbstractSeveral firn/ice cores were recovered from the Siberian Altai (Belukha plateau), central Tien Shan (Inilchek glacier) and the Tibetan Plateau (Zuoqiupu glacier, Bomi) from 1998 to 2003. The comparison analyses of stable-isotope/geochemistry records obtained from these firn/ice cores identified the physical links controlling the climate-related signals at the seasonal-scale variability. The core data related to physical stratigraphy, meteorology and synoptic atmospheric dynamics were the basis for calibration, validation and clustering of the relationships between the firn-/ice-core isotope/ geochemistry and snow accumulation, air temperature and precipitation origin. The mean annual accumulation (in water equivalent) was 106 gcm−2 a−1 at Inilchek glacier, 69 gcm−2 a−1 at Belukha and 196 g cm−2 a−1 at Zuoqiupu. The slopes in regression lines between the δ18O ice-core records and air temperature were found to be positive for the Tien Shan and Altai glaciers and negative for southeastern Tibet, where heavy amounts of isotopically depleted precipitation occur during summer monsoons. The technique of coupling synoptic climatology and meteorological data with δ18O and d-excess in firn-core records was developed to determine climate-related signals and to identify the origin of moisture. In Altai, two-thirds of accumulation from 1984 to 2001 was formed from oceanic precipitation, and the rest of the precipitation was recycled over Aral–Caspian sources. In the Tien Shan, 87% of snow accumulation forms by precipitation originating from the Aral–Caspian closed basin, the eastern Mediterranean and Black Seas, and 13% from the North Atlantic.


Sign in / Sign up

Export Citation Format

Share Document