scholarly journals Mass balance of the northeast sector of the Greenland ice sheet: a remote-sensing perspective

2000 ◽  
Vol 46 (153) ◽  
pp. 265-273 ◽  
Author(s):  
Eric Rignot ◽  
Guillaume Buscarlet ◽  
Beáta Csathó ◽  
Sivaprasad Gogineni ◽  
William Krabill ◽  
...  

AbstractSynthetic-aperture radar interferometry data and airborne ice-sounding radar (ISR) data are employed to obtain modern estimates of the inland ice production from Nioghalvfjerdsbræ (NB) and Zachariae Isstrøm (ZI), the two largest glaciers draining the northeast sector of the Greenland ice sheet. Ice fluxes are measured at the grounding line (14.2 ±1 km3 ice a−1 for NB and 10.8 ±1 km3 ice a−1 for ZI) with an ice thickness deduced from ice-shelf hydrostatic equilibrium, and along an ISR profile collected upstream of the grounding line (14.3 ± 0.7 km3 ice a−1 for NB and 11.6 ± 0.6 km3 ice a−1 for ZI). Balance fluxes calculated from a map of snow accumulation and model predictions of surface melt are 11.9 ± 2 km3 ice a−1 for NB and 10.0 ± 2 km3 ice a−1 for ZI at the grounding line, and 12.2 and 10.3 km3 ice a−1, respectively, at the ISR line. The two glaciers therefore exhibit a negative mass balance equivalent to 14% of their balance flux, with a ±12% uncertainty. Independently, we detect a retreat of the grounding line of NB between 1992 and 1996 which is larger at the glacier center (920 ± 250 m) than on the sides (240 ± 50 m). The corresponding ice-thinning rates (2 ± 1 m a−1 at the glacier center and 0.6 ± 0.3 m a−1 on the sides) are too large to be accommodated by temporal changes in ablation or accumulation, and must be due to dynamic thinning.

2009 ◽  
Vol 55 (189) ◽  
pp. 147-162 ◽  
Author(s):  
R. Thomas ◽  
E. Frederick ◽  
W. Krabill ◽  
S. Manizade ◽  
C. Martin

AbstractAircraft laser-altimeter surveys during the 1990s showed near-coastal parts of the Greenland ice sheet to be thinning; despite slow thickening at higher elevations, the ice sheet lost mass to the ocean. Many outlet glaciers thinned more rapidly than could be explained by increased melting during the recent warmer summers, indicating dynamic imbalance between glacier velocity and upstream snow accumulation. Results from more recent surveys, presented here, show that thinning rates have increased in most coastal regions. For almost half of the surveys, these increases might have resulted from increases in summer melting, but rapid thinning on others is indicative of dynamic changes that increased with time. In particular, thinning rates on the three fastest glaciers increased to tens of m a−1 after 2000, and other observations show an approximate doubling in their velocities. The deep beds of these glaciers appear to have a strong influence on rates of grounding-line retreat and thickness change, with periods of glacier acceleration and rapid thinning initiated by flotation and break-up of lightly grounded glacier snouts or break-up of floating ice tongues. Near-simultaneous thinning of these widely separated glaciers suggests that warming of deeper ocean waters might be a common cause. Nearby glaciers without deep beds are thinning far more slowly, suggesting that basal lubrication as a result of increased surface melting has only a marginal impact on Greenland outlet-glacier acceleration


2002 ◽  
Vol 35 ◽  
pp. 67-72 ◽  
Author(s):  
Edward Hanna ◽  
Philippe Huybrechts ◽  
Thomas L. Mote

AbstractWe used surface climate fields from high-resolution (~0.5660.56˚) European Centre for Medium-RangeWeather Forecasts (ECMWF) operational analyses (1992–98), together with meteorological and glaciological models of snow accumulation and surface meltwater runoff/retention, to produce novel maps of Greenland ice sheet (GIS) net accumulation, net runoff and surface mass balance (SMB). We compared our runoff maps with similar-scaled runoff (melt minus refreezing) maps based on passive-microwave satellite data. Our gross spatial/temporal patterns of runoff compared well with those from the satellite data, although amounts of modelled runoff are likely too low. Mean accumulation was 0.287 (0.307)ma–1, and mean runoff was 0.128 (0.151)ma–1, averaged across the W. Abdalati (T. L. Mote) GIS mask. Corresponding mean SMB was 0.159 (0.156)ma–1, with considerable interannual variability (standard deviation ~0.11ma–1) primarily due to variations in runoff. Considering best estimates of current iceberg calving, overall the GIS is probably currently losing mass. Our study shows great promise for meaningfully modelling SMB based on forthcoming ``second-generation’’ ECMWF re-analysis (ERA-40) data, and comparing the results with ongoing laser/radarmeasurements of surface elevation. This should help elucidate to what extent surface elevation changes are caused by short-term SMB variations or other factors (e.g. ice dynamics).


2012 ◽  
Vol 8 (2) ◽  
pp. 1523-1565 ◽  
Author(s):  
H. J. Punge ◽  
H. Gallée ◽  
M. Kageyama ◽  
G. Krinner

Abstract. Changing climate conditions on Greenland influence the snow accumulation rate and surface mass balance (SMB) on the ice sheet and, ultimately, its shape. This can in turn affect local climate via orography and albedo variations and, potentially, remote areas via changes in ocean circulation triggered by melt water or calving from the ice sheet. Examining these issues in the IPSL global model requires improving the representation of snow at the ice sheet surface. In this paper, we present the new snow scheme implemented in LMDZ, the atmospheric component of the IPSL coupled model. We analyze surface climate and SMB on the Greenland ice sheet under insolation and oceanic boundary conditions for modern, but also for two different past climates, the last glacial inception (115 kyr BP) and the Eemian (126 kyr BP). While being limited by the low resolution of the GCM, present-day SMB is on the same order of magnitude as recent regional model findings. It is affected by a moist bias of the GCM in Western Greenland and a dry bias in the north-east. Under Eemian conditions, the SMB diminishes largely, and melting affects areas with today high surface altitude including recent ice core drilling sites as NEEM. In contrast, glacial inception conditions lead to a higher mass balance overall due to the reduced melting in the colder summer climate. Compared to the widely applied positive degree day (PDD) parameterization of SMB, our direct modelling results suggest a weaker sensitivity of SMB to changing climatic forcing. In addition, significant differences in surface climate and SMB are found between simulations using monthly climatological mean and actual interannually varying monthly mean forcings for the ocean surface temperature and sea ice cover, in particular for the Eemian.


2016 ◽  
Vol 10 (4) ◽  
pp. 1739-1752 ◽  
Author(s):  
Lora S. Koenig ◽  
Alvaro Ivanoff ◽  
Patrick M. Alexander ◽  
Joseph A. MacGregor ◽  
Xavier Fettweis ◽  
...  

Abstract. Contemporary climate warming over the Arctic is accelerating mass loss from the Greenland Ice Sheet through increasing surface melt, emphasizing the need to closely monitor its surface mass balance in order to improve sea-level rise predictions. Snow accumulation is the largest component of the ice sheet's surface mass balance, but in situ observations thereof are inherently sparse and models are difficult to evaluate at large scales. Here, we quantify recent Greenland accumulation rates using ultra-wideband (2–6.5 GHz) airborne snow radar data collected as part of NASA's Operation IceBridge between 2009 and 2012. We use a semiautomated method to trace the observed radiostratigraphy and then derive annual net accumulation rates for 2009–2012. The uncertainty in these radar-derived accumulation rates is on average 14 %. A comparison of the radar-derived accumulation rates and contemporaneous ice cores shows that snow radar captures both the annual and long-term mean accumulation rate accurately. A comparison with outputs from a regional climate model (MAR) shows that this model matches radar-derived accumulation rates in the ice sheet interior but produces higher values over southeastern Greenland. Our results demonstrate that snow radar can efficiently and accurately map patterns of snow accumulation across an ice sheet and that it is valuable for evaluating the accuracy of surface mass balance models.


2000 ◽  
Vol 105 (D3) ◽  
pp. 4039-4046 ◽  
Author(s):  
Joseph R. McConnell ◽  
Ellen Mosley-Thompson ◽  
David H. Bromwich ◽  
Roger C. Bales ◽  
Jay D. Kyne

2002 ◽  
Vol 34 ◽  
pp. 217-227 ◽  
Author(s):  
Eric Rignot

AbstractThe velocity and mass discharge of nine major East Antarctic glaciers not draining into the Ross or Filchner–Ronne Ice Shelves is investigated using interferometric synthetic aperture radar (InSAR) data from the European Remote-sensing Satellite 1and 2 (ERS-1/2) andRADARSAT-1. The glaciers are: David,Ninnis, Mertz, Totten, Scott, Denman, Lambert, Shirase and Stancomb-Wills. InSAR is used to locate their grounding line with precision. Ice velocity is measured with either InSAR or a speckle-tracking technique. Ice thickness is deduced from prior-determined ice-shelf elevation assuming hydrostatic equilibrium. Mass fluxes are calculated both at the grounding line and at a flux gate located downstream. The grounding-line flux is compared to a mass input calculated from snow accumulation to deduce the glacier mass balance. The calculation is repeated at the flux gate downstream of the grounding line to estimate the average bottom melt rate of the ice shelf under steady-state conditions. The main results are: (1) Grounding lines are found several tens of km upstream of prior-identified positions, not because of a recent ice-sheet retreat but because of the inadequacy of prior-determined grounding-line positions. (2) No gross imbalance between outflow and inflow is detected on the nine glaciers being investigated, with an uncertainty of 10–20%. Prior-determined, largely positive mass imbalances were due to an incorrect localization of the grounding line. (3) High rates of bottom melting (24±7 mice a–1) are inferred near grounding zones, where ice reaches the deepest draft. A few glaciers exhibit lower bottom melt rates (4±7 mice a–1). Bottom melting, however, appears to be a major source of mass loss on Antarctic ice shelves.


2021 ◽  
Author(s):  
Tian Li ◽  
Geoffrey Dawson ◽  
Stephen Chuter ◽  
Jonathan Bamber

Abstract. The Antarctic grounding zone, which is the transition between the fully grounded ice sheet to freely floating ice shelf, plays a critical role in ice sheet instability, mass budget calculations and ice sheet model projections. It is therefore important to continuously monitor its location and migration over time. Here we present the first ICESat-2-derived high-resolution grounding zone product of the Antarctica Ice Sheet, including three important boundaries: the inland limit of tidal flexure (Point F), inshore limit of hydrostatic equilibrium (Point H) and the break-in-slope (Point Ib). This dataset was derived from automated techniques developed in this study, using ICESat-2 laser altimetry repeat tracks between 30 March 2019 and 30 September 2020. The new grounding zone product has a near complete coverage of the Antarctica Ice Sheet with a total of 21346 Point F, 18149 Point H and 36765 Point Ib identified, including the difficult to survey grounding zones, such as the fast-flowing glaciers draining into the Amundsen Sea Embayment. The locations of newly derived ICESat-2 landward limit of tidal flexure agree well with the most recent differential synthetic aperture radar interferometry (DInSAR) observations in 2018, with the mean absolute separation and standard deviation of 0.02 and 0.02 km, respectively. By comparing the ICESat-2-derived grounding zone with the previous grounding zone products, we find up-to 15 km grounding line retreat on the Crary Ice Rise of Ross Ice Shelf and the pervasive landward grounding line migration along the Amundsen Sea Embayment during the past two decades. We also identify the presence of ice plain on the Filchner-Ronne Ice Shelf and the influence of oscillating ocean tides on the grounding zone migration. The product derived from this study is available at https://doi.org/10.5523/bris.bnqqyngt89eo26qk8keckglww (Li et al., 2021) and is archived and maintained at the National Snow and Ice Data Center.


2022 ◽  
Vol 14 (2) ◽  
pp. 391
Author(s):  
Derui Xu ◽  
Xueyuan Tang ◽  
Shuhu Yang ◽  
Yun Zhang ◽  
Lijuan Wang ◽  
...  

Due to rapid global warming, the relationship between the mass loss of the Antarctic ice sheet and rising sea levels are attracting widespread attention. The Lambert–Amery glacial system is the largest drainage system in East Antarctica, and its mass balance has an important influence on the stability of the Antarctic ice sheet. In this paper, the recent ice flux in the Lambert Glacier of the Lambert–Amery system was systematically analyzed based on recently updated remote sensing data. According to Landsat-8 ice velocity data from 2018 to April 2019 and the updated Bedmachine v2 ice thickness dataset in 2021, the contribution of ice flux approximately 140 km downstream from Dome A in the Lambert Glacier area to downstream from the glacier is 8.5 ± 1.9, and the ice flux in the middle of the convergence region is 18.9 ± 2.9. The ice mass input into the Amery ice shelf through the grounding line of the whole glacier is 19.9 ± 1.3. The ice flux output from the mainstream area of the grounding line is 19.3 ± 1.0. Using the annual SMB data of the regional atmospheric climate model (RACMO v2.3) as the quality input, the mass balance of the upper, middle, and lower reaches of the Lambert Glacier was analyzed. The results show that recent positive accumulation appears in the middle region of the glacier (about 74–78°S, 67–85°E) and the net accumulation of the whole glacier is 2.4 ± 3.5. Although the mass balance of the Lambert Glacier continues to show a positive accumulation, and the positive value in the region is decreasing compared with values obtained in early 2000.


2012 ◽  
Vol 8 (6) ◽  
pp. 1801-1819 ◽  
Author(s):  
H. J. Punge ◽  
H. Gallée ◽  
M. Kageyama ◽  
G. Krinner

Abstract. Changing climate conditions on Greenland influence the snow accumulation rate and surface mass balance (SMB) on the ice sheet and, ultimately, its shape. This can in turn affect local climate via orography and albedo variations and, potentially, remote areas via changes in ocean circulation triggered by melt water or calving from the ice sheet. Examining these interactions in the IPSL global model requires improving the representation of snow at the ice sheet surface. In this paper, we present a new snow scheme implemented in LMDZ, the atmospheric component of the IPSL coupled model. We analyse surface climate and SMB on the Greenland ice sheet under insolation and oceanic boundary conditions for modern, but also for two different past climates, the last glacial inception (115 kyr BP) and the Eemian (126 kyr BP). While being limited by the low resolution of the general circulation model (GCM), present-day SMB is on the same order of magnitude as recent regional model findings. It is affected by a moist bias of the GCM in Western Greenland and a dry bias in the north-east. Under Eemian conditions, the SMB decreases largely, and melting affects areas in which the ice sheet surface is today at high altitude, including recent ice core drilling sites as NEEM. In contrast, glacial inception conditions lead to a higher mass balance overall due to the reduced melting in the colder summer climate. Compared to the widely applied positive degree-day (PDD) parameterization of SMB, our direct modelling results suggest a weaker sensitivity of SMB to changing climatic forcing. For the Eemian climate, our model simulations using interannually varying monthly mean forcings for the ocean surface temperature and sea ice cover lead to significantly higher SMB in southern Greenland compared to simulations forced with climatological monthly means.


Sign in / Sign up

Export Citation Format

Share Document