scholarly journals Links between short-term velocity variations and the subglacial hydrology of a predominantly cold polythermal glacier

2003 ◽  
Vol 49 (166) ◽  
pp. 337-348 ◽  
Author(s):  
Luke Copland ◽  
Martin J. Sharp ◽  
Peter W. Nienow

AbstractThe surface velocity of a predominantly cold polythermal glacier (John Evans Glacier, Ellesmere Island, Canada) varies significantly on both seasonal and shorter time-scales. Seasonal variations reflect the penetration of supraglacial water to the glacier bed through significant thicknesses of cold ice. Shorter-term events are associated with periods of rapidly increasing water inputs to the subglacial drainage system. Early-season short-term events immediately follow the establishment of a drainage connection between glacier surface and glacier bed, and coincide with the onset of subglacial outflow at the terminus. A mid-season short-term event occurred as surface melting resumed following cold weather, and may have been facilitated by partial closure of subglacial channels during this cold period. There is a close association between the timing and spatial distribution of horizontal and vertical velocity anomalies, the temporal pattern of surface water input to the glacier, and the formation, seasonal evolution and distribution of subglacial drainage pathways. These factors presumably control the occurrence of highwater-pressure events and water storage at the glacier bed. The observed coupling between surface water inputs and glacier velocity may allow predominantly cold polythermal glaciers to respond rapidly to climate-induced changes in surface melting.

2016 ◽  
Author(s):  
Vanessa Round ◽  
Silvan Leinss ◽  
Matthias Huss ◽  
Christoph Haemmig ◽  
Irena Hajnsek

Abstract. The recent surge cycle of Kyagar Glacier, in the Chinese Karakoram, caused formation of an ice-dammed lake and subsequent glacial lake outburst floods (GLOFs) exceeding 50 and 40 million m3 in 2015 and 2016, respectively. GLOFs from Kyagar Glacier reached double this size in 2002 and earlier, but the role of glacier surging in GLOF formation was previously unrecognised. We present an integrative analysis of the glacier surge dynamics from 2011 to 2016, assessing surge mechanisms and evaluating the surge cycle impact on GLOFs. Over 80 glacier surface velocity fields were created from TanDEM-X, Sentinel-1A and Landsat satellite data. Changes in ice thickness distribution were revealed by a time series of TanDEM-X DEMs. The analysis shows that during a quiescence phase lasting at least 14 years, ice mass built up in a reservoir area at the top of the glacier tongue and the terminus thinned by up to 100 m, but in the two years preceding the surge this pattern reversed. The surge clearly initiated with the onset of the 2014 melt season, and in the following 15 months velocity evolved in a manner consistent with a hydrologically-controlled surge mechanism with dramatic accelerations coinciding with melt seasons, winter deceleration accompanied by subglacial drainage, and rapid surge termination following the 2015 GLOF. Rapid basal motion during surging is seemingly controlled by high water pressure caused by input of surface water into either an inefficient subglacial drainage system or unstable subglacial till. Over 60 m of thickening at the terminus caused potential lake volume to increase more than 40-fold since surge onset, to currently more than 70 million m3, indicating that lake formation should be carefully monitored to anticipate large GLOFs in the near future.


2017 ◽  
Vol 11 (2) ◽  
pp. 723-739 ◽  
Author(s):  
Vanessa Round ◽  
Silvan Leinss ◽  
Matthias Huss ◽  
Christoph Haemmig ◽  
Irena Hajnsek

Abstract. The recent surge cycle of Kyagar Glacier, in the Chinese Karakoram, caused formation of an ice-dammed lake and subsequent glacial lake outburst floods (GLOFs) exceeding 40 million m3 in 2015 and 2016. GLOFs from Kyagar Glacier reached double this size in 2002 and earlier, but the role of glacier surging in GLOF formation was previously unrecognised. We present an integrative analysis of the glacier surge dynamics from 2011 to 2016, assessing surge mechanisms and evaluating the surge cycle impact on GLOFs. Over 80 glacier surface velocity fields were created from TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement), Sentinel-1A, and Landsat satellite data. Changes in ice thickness distribution were revealed by a time series of TanDEM-X elevation models. The analysis shows that, during a quiescence phase lasting at least 14 years, ice mass built up in a reservoir area at the top of the glacier tongue, and the terminus thinned by up to 100 m, but in the 2 years preceding the surge onset this pattern reversed. The surge initiated with the onset of the 2014 melt season, and in the following 15 months velocity evolved in a manner consistent with a hydrologically controlled surge mechanism. Dramatic accelerations coincided with melt seasons, winter deceleration was accompanied by subglacial drainage, and rapid surge termination occurred following the 2015 GLOF. Rapid basal motion during the surge is seemingly controlled by high water pressure, caused by input of surface water into either an inefficient subglacial drainage system or unstable subglacial till. The potential lake volume increased to more than 70 million m3 by late 2016, as a result of over 60 m of thickening at the terminus. Lake formation and the evolution of the ice dam height should be carefully monitored through remote sensing to anticipate large GLOFs in the near future.


2010 ◽  
Vol 4 (4) ◽  
pp. 2169-2199
Author(s):  
K. Bælum ◽  
D. I. Benn

Abstract. Proglacial icings accumulate in front of many High Arctic glaciers during the winter months, as water escapes from englacial or subglacial storage. Such icings have been interpreted as evidence for warm-based subglacial conditions, but several are now known to occur in front of cold-based glaciers. In this study, we investigate the drainage system of Tellbreen, a 3.5 km long cold-based polythermal glacier in central Spitsbergen, where a large proglacial icing develops each winter, to determine the location and geometry of storage elements. DEMs of the glacier surface and bed were constructed using maps, differential GPS and GPR. Patterns of surface lowering indicate that the glacier has a long-term mass balance of −0.6 ± 0.2 m/year. Englacial and subglacial drainage channels were mapped using Ground penetrating radar (GPR), showing that Tellbreen has a diverse drainage system that is capable of storing, transporting and releasing water year round. In the upper part of the glacier, drainage is mainly via supraglacial channels. These transition downglacier into shallow englacial "cut and closure" channels, formed by the incision and closure of supraglacial channels. Below thin ice near the terminus, these channels reach the bed and contain stored water throughout the winter months. Even though the bed is below pressure-melting point, Tellbreen has a surface-fed, channelized subglacial drainage system, which allows significant storage and delayed discharge.


1989 ◽  
Vol 35 (120) ◽  
pp. 201-208 ◽  
Author(s):  
Peter Jansson ◽  
Roger LeB. Hooke

AbstractTiltmeters that can detect changes in slope of a glacier surface as small as 0.1 μ rad have been used on Storglaciären. The records obtained to date have been from the upper part of the ablation area, where the bed of the glacier is overdeepened. A total of 82 d of records has been obtained for various time periods between early June and early September.There is generally a gradual change in inclination of the glacier surface over periods of several days, but these changes do not appear to be systematic. In particular, they are not consistent with vertical movements of stakes located 2–3 ice thicknesses away from the tiltmeters. This suggests that the tiltmeters are sensing disturbances over areas with diameters comparable to the local ice thickness.Superimposed on these trends are diurnal signals suggesting rises and falls of the surface just up-glacier from the riegel that bounds the overdeepening on its down-glacier end. These may be due to waves of high water pressure originating in a crevassed area near the equilibrium line. If this interpretation is correct, the waves apparently move down-glacier at speeds of 20–60 m h−1and become sufficiently focused, either by the bed topography or by conduit constrictions, to result in local uplift of the surface. Also observed are abrupt tilts towards the glacier center line shortly after the beginning of heavy rainstorms. These appear to be due to longitudinal stretching as the part of the glacier below the riegel accelerates faster than that above. Water entering the glacier by way of a series of crevasses over the riegel is believed to be responsible for this differential acceleration. In June 1987, a dramatic event was registered, probably reflecting the initial summer acceleration of the glacier.


2021 ◽  
Vol 13 (12) ◽  
pp. 2293
Author(s):  
Marina Amadori ◽  
Virginia Zamparelli ◽  
Giacomo De Carolis ◽  
Gianfranco Fornaro ◽  
Marco Toffolon ◽  
...  

The SAR Doppler frequencies are directly related to the motion of the scatterers in the illuminated area and have already been used in marine applications to monitor moving water surfaces. Here we investigate the possibility of retrieving surface water velocity from SAR Doppler analysis in medium-size lakes. ENVISAT images of the test site (Lake Garda) are processed and the Doppler Centroid Anomaly technique is adopted. The resulting surface velocity maps are compared with the outputs of a hydrodynamic model specifically validated for the case study. Thermal images from MODIS Terra are used in support of the modeling results. The surface velocity retrieved from SAR is found to overestimate the numerical results and the existence of a bias is investigated. In marine applications, such bias is traditionally removed through Geophysical Model Functions (GMFs) by ascribing it to a fully developed wind waves spectrum. We found that such an assumption is not supported in our case study, due to the small-scale variations of topography and wind. The role of wind intensity and duration on the results from SAR is evaluated, and the inclusion of lake bathymetry and the SAR backscatter gradient is recommended for the future development of GMFs suitable for lake environments.


2018 ◽  
Vol 64 (248) ◽  
pp. 969-976 ◽  
Author(s):  
J. W. SANDERS ◽  
K. M. CUFFEY ◽  
K. R. MACGREGOR ◽  
J. L. KAVANAUGH ◽  
C. F. DOW

ABSTRACTFollowing pioneering work in Norway, cirque glaciers have widely been viewed as rigidly rotating bodies. This model is incorrect for basin-filling cirque glaciers, as we have demonstrated at West Washmawapta Glacier, a small glacier in the Canadian Rocky Mountains. Here we report observations at the same glacier that assess whether complex temporal variations of flow also occur. For parts of three summers, we measured daily displacements of the glacier surface. In one year, four short-duration speed-up events were recorded. Three of the events occurred during the intervals of warmest weather, when melt was most rapid; the fourth event occurred immediately following heavy rain. We interpret the speed-up events as manifestations of enhanced water inputs to the glacier bed and associated slip lubrication by increased water volumes and pressures. No further speed-ups occurred in the final month of the melt season, despite warm temperatures and several rainstorms; the dominant subglacial water system likely transformed from one of poorly connected cavities to one with an efficient channel network. The seasonal evolution of hydrology and flow resembles behaviors documented at other, larger temperate glaciers and indicates that analyses of cirque erosion cannot rely on simple assumptions about ice dynamics.


2021 ◽  
Author(s):  
Bas Altena ◽  
Andreas Kääb ◽  
Bert Wouters

Abstract. In recent years a vast amount of glacier surface velocity data from satellite imagery has emerged based on correlation between repeat images. Thereby, much emphasis has been put on fast processing of large data volumes. The metadata of such measurements are often highly simplified when the measurement precision is lumped into a single number for the whole dataset, although the error budget of image matching is in reality not isotropic and constant over the whole velocity field. The spread of the correlation peak of individual image offset measurements is dependent on the image content and the non-uniform flow of the ice. Precise dispersion estimates for each individual velocity measurement can be important for inversion of, for instance, rheology, ice thickness and/or bedrock friction. Errors in the velocity data can propagate into derived results in a complex and exaggerating way, making the outcomes very sensitive to velocity noise and errors. Here, we present a computationally fast method to estimate the matching precision of individual displacement measurements from repeat imaging data, focussing on satellite data. The approach is based upon Gaussian fitting directly on the correlation peak and is formulated as a linear least squares estimation, making its implementation into current pipelines straightforward. The methodology is demonstrated for Sermeq Kujalleq, Greenland, a glacier with regions of strong shear flow and with clearly oriented crevasses, and Malaspina Glacier, Alaska. Directionality within an image seems to be dominant factor influencing the correlation dispersion. In our cases these are crevasses and moraine bands, while a relation to differential flow, such as shear, is less pronounced.


Author(s):  
K. V. Davydenko ◽  
N. Yu. Vysotska ◽  
V. S. Yushchyk ◽  
T. Yu. Markina

Forest fires constitute widespread and potentially destructive disturbances in forest ecosystems, particularly negative impact on soil mycorrhizal fungi which are major players of the belowground plant. This study investigated the short-term effects of wildfire on fungal communities in Left-Bank Ukraine with special emphasis on mycorrhizal fungi. During the fourteen months after autumn wildfire, fruiting bodies found in the plots were identified, and their mycological richness, diversity and production in both burned and unburnt areas were measured. Total fungal diversity decreased in burned plots, where fungal richness and diversity of mycorrhizal species were significantly lower. Our results also confirmed the data on a rather destructive influence of post-fire forest management on fungal diversity. Only three mycorrhizal fungi associated with Pinus sylvestris L. were common to both sites while pyrophilic species were in close association with burned sites. 3 Figs., 1 Table, 31 Refs. Key words: mycorrhiza, pine plantation, post-fire erosion, wildfire.


1986 ◽  
Vol 32 (110) ◽  
pp. 101-119 ◽  
Author(s):  
Almut Iken ◽  
Robert A. Bindschadler

AbstractDuring the snow-melt season of 1982, basal water pressure was recorded in 11 bore holes communicating with the subglacial drainage system. In most of these holes the water levels were at approximately the same depth (around 70 m below surface). The large variations of water pressure, such as diurnal variations, were usually similar at different locations and in phase. In two instances of exceptionally high water pressure, however, systematic phase shifts were observed; a wave of high pressure travelled down-glacier with a velocity of approximately 100 m/h.The glacier-surface velocity was measured at four lines of stakes several times daily. The velocity variations correlated with variations in subglacial water pressure. The functional relationship of water pressure and velocity suggests that fluctuating bed separation was responsible for the velocity variations. The empirical functional relationship is compared to that of sliding over a perfectly lubricated sinusoidal bed. On the basis of the measured velocity-pressure relationship, this model predicts a reasonable value of bed roughness but too high a sliding velocity and unstable sliding at too low a water pressure. The main reason for this disagreement is probably the neglect of friction from debris in the sliding model.The measured water pressure was considerably higher than that predicted by the theory of steady flow through straight cylindrical channels near the glacier bed. Possible reasons are considered. The very large disagreement between measured and predicted pressure suggests that no straight cylindrical channels may have existed.


2004 ◽  
Vol 39 ◽  
pp. 175-180 ◽  
Author(s):  
Veijo Allan Pohjola ◽  
Jim Hedfors ◽  
Per Holmlund

AbstractHow well can we estimate the incoming ice flux by calculating the ice flux through a well-defined cross-section? We test this by comparing calculated ice flux out from the small glacier Bonnevie-Svendsenbreen with the measured accumulation rate integrated over the well-defined catchment area in the Sivorgfjella plateau, Dronning Maud Land, Antarctica (74˚45’ S, 11˚10’ W). The ice flux is calculated using ice-dynamical properties from an ice temperature model and the distribution of forces calculated using a force-budget model. The input we use includes velocity data of the glacier surface, combined with ice-thickness measurements. The result is an accumulation rate on the Sivorgfjella plateau of 0.50 ± 0.05 mw.e. a–1. We find that this is similar to the accumulation rate recorded by ground-penetrating radar work in the area. We therefore find the balance-flow method, in combination with the force-budget technique and ice temperature modeling, to be a useful tool for studies of mass fluxes in a catchment area. The most important source of uncertainty in these calculations is the quality and the spatial distribution of the ice surface velocity data. The high accumulation rate shows the effect of orographic enhancement on accumulation in montane areas in Antarctica.


Sign in / Sign up

Export Citation Format

Share Document