scholarly journals The kinetic friction of saline ice against itself at low sliding velocities

1991 ◽  
Vol 15 ◽  
pp. 242-246 ◽  
Author(s):  
D. E. Jones ◽  
F. E. Kennedy ◽  
E. M. Schulson

An experimental investigation was performed on the kinetic friction coefficient of laboratory-grown, columnar saline ice sliding against itself. Tests were performed on a dual-opposing load apparatus specially manufactured for attachment to an MTS testing system. The mean kinetic friction coefficient, μ, was measured for sliding velocities from 10−6 to 5 × 10−2 m s−1 at temperatures from —3° to —40°C under a contact pressure of about 20 kPa. The ice specimens were oriented with grain columns perpendicular to the sliding interface. At -3°C and at —10°C, three distinct regions were observed: from 10−6 to about 10−5ms−1, μwas nearly constant at 0.5; at velocities from 10−5 to 10−3 m s−1, μ began to drop rapidly to about 0.1; and, above 10−3 m s−1, μ began to level off at ~0.05. The velocity at which μ began to decline increased with decreasing temperature. At temperatures below —10°C, μ increased from ~0.5 at v =10−6ms−1 to a peak value of ~0.7 near a velocity of 5 × 10−5ms−1 and then fell rapidly to about 0.1 at 10−2ms−1. In general, μ increased with decreasing temperature and sliding velocity.

1991 ◽  
Vol 15 ◽  
pp. 242-246 ◽  
Author(s):  
D. E. Jones ◽  
F. E. Kennedy ◽  
E. M. Schulson

An experimental investigation was performed on the kinetic friction coefficient of laboratory-grown, columnar saline ice sliding against itself. Tests were performed on a dual-opposing load apparatus specially manufactured for attachment to an MTS testing system. The mean kinetic friction coefficient, μ, was measured for sliding velocities from 10−6 to 5 × 10−2 m s−1 at temperatures from —3° to —40°C under a contact pressure of about 20 kPa. The ice specimens were oriented with grain columns perpendicular to the sliding interface. At -3°C and at —10°C, three distinct regions were observed: from 10−6 to about 10−5ms−1, μwas nearly constant at 0.5; at velocities from 10−5 to 10−3 m s−1, μ began to drop rapidly to about 0.1; and, above 10−3 m s−1, μ began to level off at ~0.05. The velocity at which μ began to decline increased with decreasing temperature. At temperatures below —10°C, μ increased from ~0.5 at v =10−6ms−1 to a peak value of ~0.7 near a velocity of 5 × 10−5ms−1 and then fell rapidly to about 0.1 at 10−2ms−1. In general, μ increased with decreasing temperature and sliding velocity.


2005 ◽  
Vol 128 (2) ◽  
pp. 230-235 ◽  
Author(s):  
J. Jamari ◽  
D. J. Schipper

In this paper we report the experimental investigation to evaluate the published models for the contact of a deformable sphere against a hard flat in the fully plastic contact regime. A new measurement method has been used to measure the contact area. The behavior of the mean contact pressure and the contact area as a function of the contact load are presented. Substantial differences are found between the measurements and the model predictions. A constant value of the mean contact pressure as the load increases is observed, however, the value is lower than the hardness, as often reported. The contact area is found to be a simple truncation of the sphere by a hard flat.


2018 ◽  
Vol 70 (2) ◽  
pp. 273-281 ◽  
Author(s):  
Xiaoshuang Xiong ◽  
Lin Hua ◽  
Xiaojin Wan ◽  
Can Yang ◽  
Chongyang Xie ◽  
...  

Purpose The purposes of this paper include studying the friction coefficient of polyoxymethylene (POM) under a broad range of normal load and sliding velocity; developing a mathematical model of friction coefficient of POM under a broad range of normal loads and sliding velocities; and applying the model to dynamic finite element (FE) analysis of mechanical devices containing POM components. Design/methodology/approach Through pin-on-disc experiment, the friction coefficient of POM in different normal loads and sliding velocities is investigated; the average contact pressure is between 5 and 15 Mpa and the sliding velocity is from 0.05 to 0.9 m/s. A friction algorithm is developed and embedded in the FE model to simulate the friction of POM in different normal loads and sliding velocities. Findings The friction coefficient of POM against steel declines with the increase of normal loads when the contact pressure is between 5 and 15 Mpa. The friction coefficient of POM against steel increases markedly when the sliding velocity is between 0.05 and 0.15 m/s, it decreases sharply between 0.15-0.45 m/s and then it stabilizes at high sliding velocity between 0.45 and 0.9 m/s. The friction coefficient of POM in different working operations has a significant effect on contact stress and shear stress. The simulation data and experiment data of POM friction force fit very well; therefore, it can be concluded that the friction algorithm and FE model are accurate. Originality/value The friction coefficient of POM under a broad range of normal loads and sliding velocities is investigated. The friction coefficient model of POM is established as a function of normal loads and sliding velocities in the dry sliding condition. A friction algorithm is developed and embedded in the FE model of the friction of POM. The mathematical model of the friction coefficient accurately agrees with the experiment data, and simulation data and experiment data of the POM friction force fit very well.


2013 ◽  
Vol 740 ◽  
pp. 624-629
Author(s):  
Cong Zeng ◽  
Zhong Tao ◽  
Jun Feng Bai

The main factors that influent the friction coefficient between PTFE and stainless-steel of sliding isolation bearings (SIB) are introduced in this paper. The positive pressure, sliding velocity, air temperature and lubricant all played important roles to the friction coefficient of SIB. By means of experimental investigation, the friction coefficient of SIB is indicated, and according to the test data, estimation formula of friction coefficient is regressed. Furthermore, relationship between friction coefficient, positive pressure and the use of lubricant are preliminarily validated.


2014 ◽  
Vol 903 ◽  
pp. 90-95
Author(s):  
Mohammad Lutfar Rahaman ◽  
Mohammad Asaduzzaman Chowdhury ◽  
Dewan Muhammad Nuruzzaman

In this research, friction coefficients of engineering polymers such as nylon and polytetrafluoroethylene (PTFE) are investigated under normal load and sliding velocity. Experiments are conducted when nylon and PTFE slide against different counterface pin materials such as mild steel and stainless steel 202 (SS 202). Experiments are carried out at different normal loads 2, 4 and 6 N, and sliding velocities 0.2, 0.4 and 0.6 m/s. Results show that in general, friction coefficient of nylon decreases with the increase in normal load and sliding velocity. On the other hand, during friction process, PTFE shows different trend i.e. friction coefficient of PTFE increases with the increase in normal load and sliding velocity. Moreover, it is observed that at identical operating conditions, the values of friction coefficient of nylon and PTFE are different depending on normal load, sliding velocity and counterface material.


The sliding friction between two highly oriented monolayers has been studied by using molecularly smooth mica substrates in the form of contacting orthogonal cylinders. The monolayers in the form of various normal alipathic carboxylic acids and their soaps were deposited with the aid of the Langmuir-Blodgett technique by transfer from aqueous substrates. The normal alkyl group has been varied in length from 14 to 22 methylene repeat units. Data are reported also on the influence of partial saponification of the carboxylic acid and fluorination of the alkyl chain. Most of the investigation has been confined to two contacting single monolayers although a limited amount of data is presented for multilayers sliding over one another. The character of the sliding motion depends not only on the machine but also on the monolayers, particularly their chemistry. Most of the monolayers studied provide a continuous rate of energy dissipation. However, a small number, such as certain soaps, show discontinuous or stick-slip motion. The experimental arrangement allows simultaneous measurement of the sliding frictional force, contact area and film thickness to be made during sliding. In some experiments this friction is the monotonic sliding friction but in others it is the mean maximum value during the stick phase. The film thickness measurement is accurate to 0.2 mm which allows a precise assessment of the shear plane during sliding. In all cases the monolayers and multilayers were found to be extremely durable and shear invariably occurred at the original interface between the monolayers. The sliding friction data are presented as the dynamic specific friction force or interface shear strength, and a number of contact variables have been examined. These include the applied normal load per unit contact area or mean contact pressure, the temperature and the sliding velocity. The interface shear strength is found, to a good approximation, to increase linearly with mean contact pressure but to decrease linearly with temperature in the ranges studied. The influence of sliding velocity is more complex. In the case where intermittent motion is detected the mean maximum values decrease linearly with the logarithm of the velocity. During smooth motions there is a linear increase of interface shear strength with the logarithm of the sliding velocity. The data show that the magnitude of interface shear strength and its change with contact variables are relatively insensitive to the chain length of the alkyl group but partial fluorination of this chain produces a marked increase in friction. Saponification with calcium ions causes a reduction in the specific frictional work. The trends in these data have been found to be amenable to an analysis based upon a simple stress-modified thermally activated Eyring model. The model assumes a linear increase in activation energy with mean contact pressure, and an arbitrary correction is made for the unknown extent of contact-pressure retardation during sliding. The parameters obtained by fitting the data to this model suggest that the sliding is accompanied by relaxation processes that involve the relative movement of a number of molecular chains or parts of these chains in the shear plane. This is tantamount to a dislocation moving in two dimensions.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-15
Author(s):  
Aleksandra Serafińska ◽  
Wolfgang Graf ◽  
Michael Kaliske

A realistic characterization of the frictional behaviour of materials and mechanical systems is of prime importance for the assessment of their contact interaction properties, especially in the context of undesired temperature rise or intensive wear leading to service life reduction. A characteristic tribological property of elastomeric materials is the dependency of the friction coefficient on the local contact pressure, sliding velocity, and temperature in the contact interface. Thus, the friction coefficient is not constant in the entire contact area but varies according to the magnitudes of the aforementioned three influencing factors. In this contribution, a friction law based on artificial neural networks (ANN) is presented, which is able to capture the nonlinear dependencies of the friction coefficient on the contact pressure, sliding velocity, and temperature. Due to an extraordinary adaptivity of the ANN structure, these nonlinear relations stemming from experimental data can be modelled properly within the introduced friction law, in contrast to other friction formulations, which are limited by the fitting quality of their parameters. The ANN based friction law is implemented into a contact formulation of the finite element method (FEM). Especially, the linearization of contact contributions to the weak form of momentum balance equation, required for the FEM, is developed taking into account the differentiability of the ANN. The applicability of the developed friction law within the finite element analysis of tires as well as within sliding simulations of rubber elements is presented in this paper.


2015 ◽  
Vol 642 ◽  
pp. 39-44
Author(s):  
Tse Chang Li ◽  
Yu Wen Huang ◽  
Jen Fin Lin

Using the Taguchi method, a 5-factorial, 3-level orthogonal array (L’18 (35)) was used as the experimental layout for 18 kinds of frictional lining specimen. These specimens were prepared in order to investigate their performance in establish a relationship between Ts/Td (Ts: static torque; Td: dynamic torque) and dμ/dνx (μ: friction coefficient; νx: relative velocity of frictional lining and clutch drum) parameters. The frictional torque and the rotational speeds of the driveline, clutch, and clutch drum as functions of contact time for 100 clutch cycles are experimentally obtained dμ/dνx and Ts/Td. In the study, a sharp rise in maximum contact pressure ratio occurred when the relative sliding velocity reached the critical velocity, Vc. This increase in maximum contact pressure ratio generally led to an increase of the (initially negative) dμ/dνx value. The mean values of dμ/dνx and Ts/Td for the clutching tests with 100 cycles can be roughly divided into three groups dependent on the fluctuation intensities of these two parameters, for each of which there is a linear relationship. The maximum contact pressure ratio significantly increases even increasing the mean value of dμ/dνx.


2008 ◽  
Vol 368-372 ◽  
pp. 1307-1309 ◽  
Author(s):  
Li Yun Zheng ◽  
Li Xin Zhao ◽  
Jing Jun Zhang

Ti(C,N)-based cermets were coated with a TiN/TiAlN coating using ion plating technology. The sliding wear test was performed for the coated cermets and the microstructure, composition and surface roughness of the coated cermets under different velocities and loads were characterized. The results showed that the friction coefficients of the coated cermets were lower than that of the neat cermets. Under the same load, the adhesion phenomenon of the counterpart materials on the specimens was improved and the mean friction coefficient increased with increasing sliding speed. Under the same sliding velocity, the average friction coefficient of the coated cermets was lower under higher load. The wear mechanisms were mainly adhesive wear and abrasive wear.


Sign in / Sign up

Export Citation Format

Share Document