Experimental Investigation on Friction Coefficient of Engineering Polymers Sliding against Different Counterface Materials

2014 ◽  
Vol 903 ◽  
pp. 90-95
Author(s):  
Mohammad Lutfar Rahaman ◽  
Mohammad Asaduzzaman Chowdhury ◽  
Dewan Muhammad Nuruzzaman

In this research, friction coefficients of engineering polymers such as nylon and polytetrafluoroethylene (PTFE) are investigated under normal load and sliding velocity. Experiments are conducted when nylon and PTFE slide against different counterface pin materials such as mild steel and stainless steel 202 (SS 202). Experiments are carried out at different normal loads 2, 4 and 6 N, and sliding velocities 0.2, 0.4 and 0.6 m/s. Results show that in general, friction coefficient of nylon decreases with the increase in normal load and sliding velocity. On the other hand, during friction process, PTFE shows different trend i.e. friction coefficient of PTFE increases with the increase in normal load and sliding velocity. Moreover, it is observed that at identical operating conditions, the values of friction coefficient of nylon and PTFE are different depending on normal load, sliding velocity and counterface material.

2014 ◽  
Vol 903 ◽  
pp. 33-38
Author(s):  
Mohammad Asaduzzaman Chowdhury ◽  
Dewan Muhammad Nuruzzaman ◽  
Mohammad Lutfar Rahaman

In this study, friction coefficients of different steel materials are investigated and compared. Experiments are carried out when different types of steel discs such as stainless steel 201 (SS 201), stainless steel 301 (SS 301) and mild steel slide against mild steel pin. Experiments are conducted at normal load 5, 7.5 and 10 N, sliding velocity 0.5, 0.75 and 1 m/s and relative humidity 70%. The effects of duration of rubbing on the friction coefficient of different steel materials are investigated. Results show that during friction process, test disc takes less time to stabilize with the increased normal load or sliding velocity. It is found that friction coefficient decreases with the increase in normal load while it increases with the increase in sliding velocity for all the tested materials. As a comparison, it is found that at identical operating conditions, friction coefficients are different for different steel materials depending on normal load or sliding velocity.


2012 ◽  
Vol 576 ◽  
pp. 590-593
Author(s):  
Dewan Muhammad Nuruzzaman ◽  
Mohammad Asaduzzaman Chowdhury

An endeavor has been made to study and compare the friction coefficient of different polymer and composite materials. Experiments were carried out when stainless steel 304 (SS 304) pin slides on different types of composite and polymer materials such as cloth reinforced ebonite (commercially known as gear fiber), glass fiber reinforced plastic (glass fiber), nylon and polytetrafluoroethylene (PTFE). Experiments were conducted at normal load 5, 7.5, 10 N, sliding velocity 0.5, 0.75, 1 m/s and relative humidity 70%. Variations of friction coefficient with the duration of rubbing at different normal loads and sliding velocities were investigated. Results show that friction coefficient varies with duration of rubbing, normal load and sliding velocity. In general, friction coefficient increases with the increase in normal load and sliding velocity for all the tested materials except nylon. At identical operating conditions, the magnitudes of friction coefficient are different for different polymer and composite materials.


Author(s):  
Dewan Muhammad Nuruzzaman ◽  
Mohammad Asaduzzaman Chowdhury

This paper examines the relation between friction/wear and different types of steel materials under different normal loads and sliding velocities and to explore the possibility of adding controlled normal load and sliding velocity to a mechanical process. In order to do so, a pin on disc apparatus is designed and fabricated. Experiments are carried out when different types of disc materials such as stainless steel 304 (SS 304), stainless steel 316 (SS 316) and mild steel slide against stainless steel 304 (SS 304) pin. Variations of friction coefficient with the duration of rubbing at different normal loads and sliding velocities are investigated. Results show that friction coefficient varies with duration of rubbing, normal load and sliding velocity. In general, friction coefficient increases for a certain duration of rubbing and after that it remains constant for the rest of the experimental time. The obtained results reveal that friction coefficient decreases with the increase in normal load for all the tested materials. It is also found that friction coefficient increases with the increase in sliding velocity for all the materials investigated. Moreover, wear rate increases with the increase in normal load and sliding velocity. At identical operating condition, the magnitudes of friction coefficient and wear rate are different for different materials depending on sliding velocity and normal load.


2013 ◽  
Vol 740 ◽  
pp. 624-629
Author(s):  
Cong Zeng ◽  
Zhong Tao ◽  
Jun Feng Bai

The main factors that influent the friction coefficient between PTFE and stainless-steel of sliding isolation bearings (SIB) are introduced in this paper. The positive pressure, sliding velocity, air temperature and lubricant all played important roles to the friction coefficient of SIB. By means of experimental investigation, the friction coefficient of SIB is indicated, and according to the test data, estimation formula of friction coefficient is regressed. Furthermore, relationship between friction coefficient, positive pressure and the use of lubricant are preliminarily validated.


Author(s):  
Goutam Chandra Karar ◽  
Nipu Modak

The experimental investigation of reciprocating motion between the aluminum doped crumb rubber /epoxy composite and the steel ball has been carried out under Reciprocating Friction Tester, TR-282 to study the wear and coefficient of frictions using different normal loads (0.4Kg, 0.7Kgand1Kg), differentfrequencies (10Hz, 25Hz and 40Hz).The wear is a function of normal load, reciprocating frequency, reciprocating duration and the composition of the material. The percentage of aluminum presents in the composite changesbut the other components remain the same.The four types of composites are fabricated by compression molding process having 0%, 10%, 20% and 30% Al. The effect of different parameters such as normal load, reciprocating frequency and percentage of aluminum has been studied. It is observed that the wear and coefficient of friction is influenced by the parameters. The tendency of wear goes on decreasing with the increase of normal load and it is minimum for a composite having 10%aluminum at a normal load of 0.7Kg and then goes on increasing at higher loads for all types of composite due to the adhesive nature of the composite. The coefficient of friction goes on decreasing with increasing normal loads due to the formation of thin film as an effect of heat generation with normal load.


Author(s):  
Noritsugu Umehara ◽  
Takahiro Yamamoto ◽  
Yoshio Fuwa

The effect of applied DC voltage on the friction and wear of CNx sliding against stainless steel pin in air was clarified. Friction coefficient decreased with the increasing negative voltage to apply to the ball and disk in air. On the other hand, positive voltage increased friction coefficient. Friction coefficient of CNx in air decreased from 0.22 to 0.05 by applying electric voltage of DC −200 V. Specific wear rate was decreased with the increasing applied positive and negative voltage. It was considered that the oxidation of CNx was controlled by electric field.


2012 ◽  
Vol 134 (1) ◽  
Author(s):  
G. Y. Li ◽  
Z. Y. Wang ◽  
M. K. Lei

A single high-nitrogen face-centered-cubic (f.c.c.) phase (γN) layer formed on the plasma source nitrided AISI 316 austenitic stainless steel at a nitriding temperature of 450 °C for a nitriding time of 6 h. An approximately 17 μm-thick γN layer has a peak nitrogen concentration of about 20 at. %. Tribological properties of the γN phase layer on a ball-on-disk tribometer against an Si3N4 ceramic counterface under a normal load of 2 and 6 N with a sliding speed of 0.15 to 0.29 m/s were investigated by friction coefficient and specific wear rate measurement. Worn surface morphology and wear debris were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. The microhardness of the γN phase layer on the nitrided stainless steel was measured as about 15.1 GPa. The change in the friction coefficient of the γN phase layer on the stainless steel was dependent on the applied normal load, which was associated with that in the specific wear rate. Under a lower normal load of 2 N, the lower specific wear rate of the γN phase layer with a sliding speed of 0.15 m/s was obtained as 2.8 × 10−6 mm3/N m with a friction coefficient of 0.60. Under a higher normal load of 6 N, the lower specific wear rate with a sliding speed of 0.29 m/s was 7.9 × 10−6 mm3/N m with a friction coefficient of 0.80. When the applied load increased from 2 to 6 N, a transition of the wear mechanisms from oxidative to abrasive wear was found, which was derived from the oxidation reaction and the h.c.p. martensite phase transformation of the γN phase during the wear tests, respectively.


2018 ◽  
Vol 70 (2) ◽  
pp. 273-281 ◽  
Author(s):  
Xiaoshuang Xiong ◽  
Lin Hua ◽  
Xiaojin Wan ◽  
Can Yang ◽  
Chongyang Xie ◽  
...  

Purpose The purposes of this paper include studying the friction coefficient of polyoxymethylene (POM) under a broad range of normal load and sliding velocity; developing a mathematical model of friction coefficient of POM under a broad range of normal loads and sliding velocities; and applying the model to dynamic finite element (FE) analysis of mechanical devices containing POM components. Design/methodology/approach Through pin-on-disc experiment, the friction coefficient of POM in different normal loads and sliding velocities is investigated; the average contact pressure is between 5 and 15 Mpa and the sliding velocity is from 0.05 to 0.9 m/s. A friction algorithm is developed and embedded in the FE model to simulate the friction of POM in different normal loads and sliding velocities. Findings The friction coefficient of POM against steel declines with the increase of normal loads when the contact pressure is between 5 and 15 Mpa. The friction coefficient of POM against steel increases markedly when the sliding velocity is between 0.05 and 0.15 m/s, it decreases sharply between 0.15-0.45 m/s and then it stabilizes at high sliding velocity between 0.45 and 0.9 m/s. The friction coefficient of POM in different working operations has a significant effect on contact stress and shear stress. The simulation data and experiment data of POM friction force fit very well; therefore, it can be concluded that the friction algorithm and FE model are accurate. Originality/value The friction coefficient of POM under a broad range of normal loads and sliding velocities is investigated. The friction coefficient model of POM is established as a function of normal loads and sliding velocities in the dry sliding condition. A friction algorithm is developed and embedded in the FE model of the friction of POM. The mathematical model of the friction coefficient accurately agrees with the experiment data, and simulation data and experiment data of the POM friction force fit very well.


2021 ◽  
Vol 320 ◽  
pp. 01007
Author(s):  
V.A. Veselov ◽  
M.V. Kitaev ◽  
P.O. Pastukhov ◽  
O.E. Surov

The main purpose of ice-resistant coatings designed for icebreakers and ice navigation ships is the ability to protect of the ship’s hull in the most severe operating conditions. The special coatings certified by the Classification Societies for ice abrasion can provide this protection. These coatings allow to reduce the required thickness of the ship’s hull and reduce the construction weight of the ships. On the other hand, these coatings must have a low friction coefficient, which reduce the frictional resistance of the hull on ice and fuel consumption, increase the service life of the ship and power plant, reduce CO2 emissions into the atmosphere and affect to the operational and economic efficiency of the ship. In this paper, we present the results of experimental tests of friction coefficient on ice for various types of ice-resistant coatings and analysis the influence of ice-resistant coatings characteristics to the energy efficiency of ice-going ships.


Sign in / Sign up

Export Citation Format

Share Document