Can the mass balance of the entire glacier area of the Tien Shan be estimated?

1992 ◽  
Vol 16 ◽  
pp. 173-179
Author(s):  
M.B. Dyurgerov ◽  
M.G. Kunakhovitch ◽  
V.N. Mikhalenko ◽  
A. M. Sokalskaya ◽  
V. A. Kuzmichenok

The total area of glacierization of the Tien Shan in the boundary area of the USSR is about 8000 km2. The computation of mass balance was determined for this area in 12 river basins.In computation procedure, the vertical profile of snow accumulation in these regions and exponential dependence of variation of ablation with altitude are used. Thus the mass balance in each basin, bn, was calculated on the basis of these curves and represented in its relation with the equilibrium line altitude (ELA). It is shown that the relation ELA = f(bn) is linear when the range of bn values is close to zero, and in all altitude intervals this relation can be described by hypsographic curves, in all basins bn positive up to an ELA elevation of 3450 to 3500 m a.s.l. For average annual altitude of ELA, bn is negative for all regions. So the glaciers of these mountains add about 4 km3 of water to the total annual runoff.

1992 ◽  
Vol 16 ◽  
pp. 173-179 ◽  
Author(s):  
M.B. Dyurgerov ◽  
M.G. Kunakhovitch ◽  
V.N. Mikhalenko ◽  
A. M. Sokalskaya ◽  
V. A. Kuzmichenok

The total area of glacierization of the Tien Shan in the boundary area of the USSR is about 8000 km2. The computation of mass balance was determined for this area in 12 river basins.In computation procedure, the vertical profile of snow accumulation in these regions and exponential dependence of variation of ablation with altitude are used. Thus the mass balance in each basin,bn, was calculated on the basis of these curves and represented in its relation with the equilibrium line altitude (ELA). It is shown that the relation ELA =f(bn) is linear when the range ofbnvalues is close to zero, and in all altitude intervals this relation can be described by hypsographic curves, in all basinsbnpositive up to an ELA elevation of 3450 to 3500 m a.s.l. For average annual altitude of ELA,bnis negative for all regions. So the glaciers of these mountains add about 4 km3of water to the total annual runoff.


1995 ◽  
Vol 26 (4-5) ◽  
pp. 285-296 ◽  
Author(s):  
Jon Ove Hagen ◽  
Bernard Lefauconnier

The river Bayelva drains a catchment area of 31.5 km2 in the Kongsfjord area close to the research station Ny-Ålesund (79° N 12°E) on the northwest coast of Spitsbergen. The basin is 54% glacierized, and the studied glacier Austre Brøggerbreen is 6.1 km2 and constitutes 20% of the basin. On this glacier a mass-balance monitoring program including accumulation and ablation measurements has been carried out continuously since 1967. The winter snow accumulation shows very stable conditions with a mean accumulation of 0.71 ± 0.16 m/year in water equivalent. The runoff from the glacier in an equilibrium year should thus be 4.33 × 106 m3. The mean ablation on this glacier has been greater than the winter accumulation, 1.14 ± 0.26 m/year of water equivalent, which results in an annual runoff of 6.95 × 106 m3. That is more than 60% higher runoff from the glacier than in a year with zero net balance. The result is a mean net balance of – 0.42 m/year, or an annual runoff from the glacier due to the retreat of the glacier of 2.6 × 106 m3. In Bayelva, a runoff station was operated from 1974-1978. In 1988 this basin was chosen as a hydrological research site, and the runoff measurements were restarted and a permanent station for water discharge and sediment transport measurements was constructed in the river. This basin is the only one in Svalbard with some years of hydrological data. The water balance discussion shows that there is good agreement between the measured runoff in the river Bayelva and the potential runoff calculated from the mass-balance measurements on Brøggerbreen. On the basis of this correlation the total annual runoff was reconstructed from the whole period of mass-balance data from 1967-1991. The runoff from the whole basin has been 30% higher than in years with an equilibrium mass-balance on the glacier.


2019 ◽  
Author(s):  
Zhiguang Tang ◽  
Xiaoru Wang ◽  
Jian Wang ◽  
Xin Wang ◽  
Junfeng Wei

Abstract. The snowline altitude at the end of melting season (SLA-EMS) can be used as an indicator of the equilibrium line altitude (ELA) and therefore for the annual mass balance of glaciers in certain conditions. High Mountain Asia (HMA) hosts the largest glacier and perennial snow cover concentration outside the polar regions, but the spatiotemporal pattern of SLA-EMS under climate change is poorly understood in there. Here, we develop a method for estimating SLA-EMS over large-scale area by using the cloud-removed MODIS fractional snow cover data, and investigate the spatiotemporal characteristics and trends of SLA-EMS during 2001–2016 over the HMA. The possible linkage between the SLA-EMS and temperature and precipitation changes over the HMA is also investigated. The results are as follows: (1) There are good linear regression relationships (R = −0.66) between the extracted grid (30 km) SLA-EMS and glaciers annual mass balance over the HMA. (2) Generally, the SLA-EMS in the HMA decreases with increase of latitude. And due to the mass elevation effect, it decreases from the high altitude region of Himalayas and inner Tibet to surrounding low mountainous area. (3) The SLA-EMS of HMA generally shows a rising trend in the recent years (2001–2016). In total, 75.3 % (24.2 % with a significant increase) and 16.1 % (less than 1 % with a significant decrease) of the study area show increasing and decreasing trends in SLA-EMS, respectively. The SLA-EMS significant increases in Tien Shan, Inner Tibet, south and east Tibet, east Himalaya and Hengduan Shan. (4) Temperature (especially the summer temperature) trends to be the dominant climatic factor affecting the variations of SLA-EMS over the HMA. Under the background of the generally losing glaciers mass in HMA, if the SLA-EMS continues to rise as a result of global warming, it will accelerate the negative mass balances of the glaciers. This study is an important step towards reconstruction the time series of glacier annual mass balance using SLA-EMS datasets at the scale of HMA to better document the relationships between climate and glaciers.


2010 ◽  
Vol 49 (1) ◽  
pp. 47-67 ◽  
Author(s):  
Sebastian H. Mernild ◽  
Glen E. Liston

Abstract In many applications, a realistic description of air temperature inversions is essential for accurate snow and glacier ice melt, and glacier mass-balance simulations. A physically based snow evolution modeling system (SnowModel) was used to simulate 8 yr (1998/99–2005/06) of snow accumulation and snow and glacier ice ablation from numerous small coastal marginal glaciers on the SW part of Ammassalik Island in SE Greenland. These glaciers are regularly influenced by inversions and sea breezes associated with the adjacent relatively low temperature and frequently ice-choked fjords and ocean. To account for the influence of these inversions on the spatiotemporal variation of air temperature and snow and glacier melt rates, temperature inversion routines were added to MircoMet, the meteorological distribution submodel used in SnowModel. The inversions were observed and modeled to occur during 84% of the simulation period. Modeled inversions were defined not to occur during days with strong winds and high precipitation rates because of the potential of inversion breakup. Field observations showed inversions to extend from sea level to approximately 300 m MSL, and this inversion level was prescribed in the model simulations. Simulations with and without the inversion routines were compared. The inversion model produced air temperature distributions with warmer lower-elevation areas and cooler higher-elevation areas than without inversion routines because of the use of cold sea-breeze-based temperature data from underneath the inversion. This yielded an up to 2 weeks earlier snowmelt in the lower areas and up to 1–3 weeks later snowmelt in the higher-elevation areas of the simulation domain. Averaged mean annual modeled surface mass balance for all glaciers (mainly located above the inversion layer) was −720 ± 620 mm w.eq. yr−1 (w.eq. is water equivalent) for inversion simulations, and −880 ± 620 mm w.eq. yr−1 without the inversion routines, a difference of 160 mm w.eq. yr−1. The annual glacier loss for the two simulations was 50.7 × 106 and 64.4 × 106 m3 yr−1 for all glaciers—a difference of ∼21%. The average equilibrium line altitude (ELA) for all glaciers in the simulation domain was located at 875 and 900 m MSL for simulations with or without inversion routines, respectively.


2006 ◽  
Vol 7 (4) ◽  
pp. 808-824 ◽  
Author(s):  
Sebastian H. Mernild ◽  
Glen E. Liston ◽  
Bent Hasholt ◽  
Niels T. Knudsen

Abstract A physically based snow-evolution modeling system (SnowModel) that includes four submodels—the Micrometeorological Model (MicroMet), EnBal, SnowPack, and SnowTran-3D—was used to simulate five full-year evolutions of snow accumulation, distribution, sublimation, and surface melt on the Mittivakkat Glacier, in southeast Greenland. Model modifications were implemented and used 1) to adjust underestimated observed meteorological station solid precipitation until the model matched the observed Mittivakkat Glacier winter mass balance, and 2) to simulate glacier-ice melt after the winter snow accumulation had ablated. Meteorological observations from two meteorological stations were used as model inputs, and glaciological mass balance observations were used for model calibration and testing of solid precipitation observations. The modeled end-of-winter snow-water equivalent (w.eq.) accumulation increased with elevation from 200 to 700 m above sea level (ASL) in response to both elevation and topographic influences, and the simulated end-of-summer location of the glacier equilibrium line altitude was confirmed by glaciological observations and digital images. The modeled test-period-averaged annual mass balance was 150 mm w.eq. yr−1, or ∼15%, less than the observed. Approximately 12% of the precipitation was returned to the atmosphere by sublimation. Glacier-averaged mean annual modeled surface melt ranged from 1272 to 2221 mm w.eq. yr−1, of which snowmelt contributed from 610 to 1040 mm w.eq. yr−1. The surface-melt period started between mid-May and the beginning of June, and lasted until mid-September; there were as many as 120 melt days at the glacier terminus. The model simulated a Mittivakkat Glacier recession averaging −616 mm w.eq. yr−1, almost equal to the observed −600 mm w.eq. yr−1.


2014 ◽  
Vol 55 (66) ◽  
pp. 177-186 ◽  
Author(s):  
Yanan Li ◽  
Yingkui Li

AbstractThis paper examines the topographic and geometric controls on glacier changes in area and equilibrium-line altitude (ELA) in the central Tien Shan, China, since the Little Ice Age (LIA). We delineate the extents of 487 modern glaciers and their corresponding maximum LIA glacial advances using satellite imagery in Google Earth, and analyze the relationships between the magnitude of glacier changes and a set of local topographic/geometric factors including glacier area, slope, aspect, shape, hypsometry and mean elevation. Our results show that: (1) glacier area decreased from 460.2 km2 during the LIA to 265.6 km2 in the 2000s (a loss of 42.3%), with an average ELA increase of ~100m; (2) relative area changes of glaciers are strongly affected by two of these local factors (glacier area and mean elevation); and (3) ELA change does not show a strong relationship with local factors, suggesting that it may be controlled mainly by climatic factors. This study provides important insights into the local controls on glacier changes at the centennial timescale, which are of critical importance to assess future glacier changes in this arid and semi-arid region.


2014 ◽  
Vol 60 (223) ◽  
pp. 867-878 ◽  
Author(s):  
Delphine Six ◽  
Christian Vincent

AbstractAssessment of the sensitivity of surface mass balance and equilibrium-line altitude (ELA) to climate change is crucial for simulating the future evolution of glaciers. Such an assessment has been carried out using an extensive dataset comprising numerous measurements of snow accumulation and snow and ice ablation made on four French glaciers over the past 16 years. Winter mass balance shows a complicated pattern with respect to altitude, with no clear linear relationship. Although the ratios of winter mass balance to valley precipitation differ considerably from site to site, they are relatively constant over time. Relationships between snow/ice ablation and temperature are stable, with no link with altitude. The mean snow and ice positive degree-day (PDD) factors are 0.003 and 0.0061 m w.e. °C−1 d−1. This analysis shows that, at a given site, ablation depends mainly on the amount of snow precipitation and on cumulative PDDs. The sensitivity of annual ablation to temperature change increases almost linearly from 0.25 m w.e. °C−1 at 3500 m to 1.55 m w.e. °C−1 at 1650 m. ELA sensitivity to temperature change was found to range from 50 to 85 m °C−1.


2020 ◽  
Author(s):  
Alla Turchaninova ◽  
Sergey Sokratov ◽  
Yury Seliverstov ◽  
Dmitry Petrakov ◽  
Anton Lazarev ◽  
...  

<p>Glacier mass balance is affected by non-climatic factors such as topography, debris cover and geometric parameters of glaciers themselves, avalanche activity, volcanism, etc. The contribution of snow avalanches to the snow accumulation on a glacier is still among the least studied components of the glacier’s mass balance. We propose a possible approach for the numerical assessment of snow avalanche contribution to accumulation at mountain glaciers. The approach consists on the following steps: terrain analysis; weather data analysis; snow avalanche volume assessment during an analyzed balance year; numerical simulation of snow avalanches using RAMMS; evaluation of snow avalanche contribution to glacier accumulation. The proposed methodology was tested on three glaciers (Batysh Sook, № 354, Karabatkak) with an area up to 6,5 km<sup>2</sup> in the Inner Tien Shan and Kolka glacier with an area 1,2 km<sup>2</sup> in the Central Caucasus. To evaluate snow avalanche contribution to the winter accumulation, we reconstructed avalanche release zones that were most probably active during the analyzed balance year and corresponding snow fracture height in each zone. The numerical simulations of most probable released snow avalanches during the analyzed year using avalanche dynamics RAMMS software were performed and compared with the field observations and UAV orthophoto images. The outlines of avalanches deposits were realistically reproduced by RAMMS according to the results of field observations. The estimated contribution of snow avalanches to the accumulation on the studied glaciers during the analyzed balance year was as follows: Batysh Sook – 7,4±2,5%; № 354 – 2,2±0,7%; Karabatkak– 10,8±3,6% of the winter mass balance. In strong contradiction to the benchmark glaciers in the Tien Shan, the Kolka glacier demonstrates rapid mass gain in the Caucasus. It might be explained by significant, up to 80% share of avalanche nourishment to glacier mass gain. We note that avalanche-fed glaciers seem to be more stable at current stage of regional warming observed both in the Caucasus and the Tian Shan. The obtained results show the importance of the non-climatic factors for glacier surface mass balance control.</p>


2015 ◽  
Vol 9 (1) ◽  
pp. 341-355 ◽  
Author(s):  
F. Brun ◽  
M. Dumont ◽  
P. Wagnon ◽  
E. Berthier ◽  
M. F. Azam ◽  
...  

Abstract. Few glaciological field data are available on glaciers in the Hindu Kush–Karakoram–Himalayan (HKH) region, and remote sensing data are thus critical for glacier studies in this region. The main objectives of this study are to document, using satellite images, the seasonal changes of surface albedo for two Himalayan glaciers, Chhota Shigri Glacier (Himachal Pradesh, India) and Mera Glacier (Everest region, Nepal), and to reconstruct the annual mass balance of these glaciers based on the albedo data. Albedo is retrieved from Moderate Resolution Imaging Spectroradiometer (MODIS) images, and evaluated using ground based measurements. At both sites, we find high coefficients of determination between annual minimum albedo averaged over the glacier (AMAAG) and glacier-wide annual mass balance (Ba) measured with the glaciological method (R2 = 0.75). At Chhota Shigri Glacier, the relation between AMAAG found at the end of the ablation season and Ba suggests that AMAAG can be used as a proxy for the maximum snow line altitude or equilibrium line altitude (ELA) on winter-accumulation-type glaciers in the Himalayas. However, for the summer-accumulation-type Mera Glacier, our approach relied on the hypothesis that ELA information is preserved during the monsoon. At Mera Glacier, cloud obscuration and snow accumulation limits the detection of albedo during the monsoon, but snow redistribution and sublimation in the post-monsoon period allows for the calculation of AMAAG. Reconstructed Ba at Chhota Shigri Glacier agrees with mass balances previously reconstructed using a positive degree-day method. Reconstructed Ba at Mera Glacier is affected by heavy cloud cover during the monsoon, which systematically limited our ability to observe AMAAG at the end of the melting period. In addition, the relation between AMAAG and Ba is constrained over a shorter time period for Mera Glacier (6 years) than for Chhota Shigri Glacier (11 years). Thus the mass balance reconstruction is less robust for Mera Glacier than for Chhota Shigri Glacier. However our method shows promising results and may be used to reconstruct the annual mass balance of glaciers with contrasted seasonal cycles in the western part of the HKH mountain range since the early 2000s when MODIS images became available.


2015 ◽  
Vol 9 (6) ◽  
pp. 6153-6185
Author(s):  
J. Małecki

Abstract. Svalbard is a heavily glacier covered archipelago in the Arctic. Its central regions, including Dickson Land (DL), are occupied by small alpine glaciers, which post-Little Ice Age (LIA) changes remain only sporadically investigated. This study presents a comprehensive analysis of glacier changes in DL based on inventories compiled from topographic maps and digital elevation models (DEMs) for LIA, 1960's, 1990 and 2009/11. The 37.9 ± 12.1 % glacier area decrease in DL (i.e. from 334.1 ± 38.4 km2 during LIA to 207.4 ± 4.6 km2 in 2009/11) has been primarily caused by accelerating termini retreat. The mean 1990–2009/11 geodetic mass balance of glaciers was -0.70 ± 0.06 m a-1 (-0.63 ± 0.05 m w.e. a-1), being one of the most negative from Svalbard regional means known from the literature. If the same figure was to be applied for other similar regions of central Spitsbergen, that would result in a considerable contribution to total Svalbard mass balance despite negligible proportion to total glacier area. Glacier changes in Dickson Land were linked to dramatic equilibrium line altitude (ELA) shift, which in the period 1990–2009/11 has been located ca. 500 m higher than required for steady-state. The mass balance of central Spitsbergen glaciers seems to be therefore more sensitive to climate change than previously thought.


Sign in / Sign up

Export Citation Format

Share Document