scholarly journals Bering Glacier surge 2011: analysis of laser altimeter data

2013 ◽  
Vol 54 (63) ◽  
pp. 158-170 ◽  
Author(s):  
Ute C. Herzfeld ◽  
Brian McDonald ◽  
Maciej Stachura ◽  
Robert Griffin Hale ◽  
Phillip Chen ◽  
...  

AbstractThe Bering Glacier–Bagley Icefield system in Alaska is currently surging (2011). Large-scale elevation changes and small-scale elevation-change characteristics are investigated to understand surge progression, especially mass transport from the pre-surge reservoir area to the receiving area and propagation of the kinematic surge wave as manifested in heavy crevassing characteristic of rapid, brittle deformation. This analysis is based on airborne laser altimeter data collected over Bering Glacier in September 2011. Results include the following: (1) Maximal crevasse depth is 60 m, reached in a rift that separates two deformation domains, indicative of two different flow regimes. Otherwise surge crevasse depth reaches 20–30 m. (2) Characteristic parameters of structural provinces are derived by application of geostatistical classification. Parameters include significance and spacing of crevasses, surface roughness and crevasse-edge curvature (indicative of crevasse age). A classification based on these parameters serves to objectively discriminate structural provinces, indicative of surge progression down-glacier and up-glacier. (3) Elevation changes from 2011 and 2010 altimetry show 40–70 m surface lowering in the reservoir area in lower central Bering Glacier and 20–40m thickening near the front in Tashalich arm. Combining elevation changes with results of crevasse profilometry and pattern analysis, the rapid progression of the surge can be mathematically–physically reconstructed.

2014 ◽  
Vol 60 (221) ◽  
pp. 489-499 ◽  
Author(s):  
Andreas Münchow ◽  
Laurie Padman ◽  
Helen A. Fricker

AbstractPetermann Gletscher, northwest Greenland, drains 4% of the Greenland ice sheet into Nares Strait. Its floating ice shelf retreated from 81 to 48 km in length during two large calving events in 2010 and 2012. We document changes in the three-dimensional ice-shelf structure from 2000 to 2012, using repeated tracks of airborne laser altimetry and ice radio-echo sounding, ICESat laser altimetry and MODIS visible imagery. The recent ice-shelf velocity, measured by tracking surface features between flights in 2010 and 2011, is ~1.25 km a−1, ~15–30% faster than estimates made before 2010. The steady- state along-flow ice divergence represents 6.3 Gta−1 mass loss through basal melting (~5Gta−1) and surface melting and sublimation (~1.0Gta−1). Airborne laser altimeter data reveal thinning, both along a thin central channel and on the thicker ambient ice shelf. From 2007 to 2010 the ice shelf thinned by ~5 m a−1, which represents a non-steady mass loss of ~4.1 Gta−1. We suggest that thinning in the basal channels structurally weakened the ice shelf and may have played a role in the recent calving events.


2003 ◽  
Vol 49 (165) ◽  
pp. 223-230 ◽  
Author(s):  
Vandy Blue Spikes ◽  
Beáta M. Csatho ◽  
Gordon S. Hamilton ◽  
Ian M. Whillans

AbstractRepeat airborne laser altimeter measurements are used to derive surface elevation changes on parts of Whillans Ice Stream and Ice Stream C, West Antarctica. Elevation changes are converted to estimates of ice equivalent thickness change using local accumulation rates, surface snow densities and vertical bedrock motions. The surveyed portions of two major tributaries of Whillans Ice Stream are found to be thinning almost uniformly at an average rate of ∼1 m a−1. Ice Stream C has a complicated elevation-change pattern, but is generally thickening. These results are used to estimate the contribution of each surveyed region to the current rate of global sea-level rise.


2013 ◽  
Vol 59 (215) ◽  
pp. 524-532 ◽  
Author(s):  
J.F. Levinsen ◽  
I.M. Howat ◽  
C.C. Tscherning

AbstractWe combine the complementary characteristics of laser altimeter data and stereoscopic digital elevation models (DEMs) to construct high-resolution (∼100 m) maps of surface elevations and elevation changes over rapidly changing outlet glaciers in Greenland. Measurements from spaceborne and airborne laser altimeters have relatively low errors but are spatially limited to the ground tracks, while DEMs have larger errors but provide spatially continuous surfaces. The principle of our method is to fit the DEM surface to the altimeter point clouds in time and space to minimize the DEM errors and use that surface to extrapolate elevations away from altimeter flight lines. This reduces the DEM registration errors and fills the gap between the altimeter paths. We use data from ICESat and ATM as well as SPOT 5 DEMs from 2007 and 2008 and apply them to the outlet glaciers Jakobshavn Isbræ (JI) and Kangerdlugssuaq (KL). We find that the main trunks of JI and KL lowered at rates of 30–35 and 7–20 m a−1,respectively. The rates decreased inland. The corresponding errors were 0.3–5.2 m a−1for JI and 0.3–5.1 m a−1for KL, with errors increasing proportionally with distance from the altimeter paths.


2020 ◽  
Vol 12 (5) ◽  
pp. 770 ◽  
Author(s):  
Cui Yuan ◽  
Peng Gong ◽  
Yuqi Bai

Although the Advanced Topographic Laser Altimeter System (ATLAS) onboard the Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) was primarily designed for glacier and sea-ice measurement, it can also be applied to monitor lake surface height (LSH). However, its performance in monitoring lakes/reservoirs has rarely been assessed. Here, we report an accuracy evaluation of the ICESat-2 laser altimetry data over 30 reservoirs in China using gauge data. To show its characteristics in large-scale lake monitoring, we also applied an advanced radar altimeter SARAL (Satellite for ARgos and ALtika) and the first laser altimeter ICESat (Ice, Cloud and land Elevation Satellite) to investigate all lakes and reservoirs (>10 km2) in China. We found that the ICESat-2 has a greatly improved altimetric capability, and the relative altimetric error was 0.06 m, while the relative altimetric error was 0.25 m for SARAL. Compared with SARAL and ICESat data, ICESat-2 data had the lowest measurement uncertainty (the standard deviation of along-track heights; 0.02 m vs. 0.17 m and 0.07 m), the greatest temporal frequency (3.43 vs. 1.35 and 1.48 times per year), and the second greatest lake coverage (636 vs. 814 and 311 lakes). The precise LSH profiles derived from the ICESat-2 data showed that most lakes (90% of 636 lakes) had a quasi-horizontal LSH profile (measurement uncertainty <0.05 m), and special methods are needed for mountainous lakes or shallow lakes to extract precise LSHs.


2021 ◽  
Author(s):  
Christian Sommer ◽  
Thorsten Seehaus ◽  
Lukas Sochor ◽  
Philipp Malz ◽  
Matthias Braun

&lt;p&gt;The large ice caps and glaciers of the northern and southern polar regions have the potential to contribute significantly to global sea-level rise, yet measurements of glacier mass changes in those regions are scarce and difficult due to harsh conditions and the size of Arctic and Antarctic glacier areas. Acquisitions of the synthetic aperture radar satellite mission TanDEM-X provide valuable insights into glacier dynamics in those regions as the X-band radar is independent from clouds and illumination and can resolve elevation changes of large glacierized areas as well as individual glaciers. We use specifically generated and coregistered digital elevation models (DEM) from repeated TanDEM-X data takes to derive glacier elevation changes between 2010 and 2020.&lt;/p&gt;&lt;p&gt;For the Arctic regions, we already calculated elevation changes for the Russian Arctic archipelagos from TanDEM-X acquisitions (2000-2017). Currently, we are preparing similar TanDEM-X DEM differences for Arctic glaciers outside the Greenland ice sheet (Svalbard, Iceland, Alaska, Canadian Arctic, Scandinavia and North Asia). In contrast to the wide and smooth areas of the East and West Antarctic ice sheets, the steep topography of the Antarctic Peninsula strongly limits the application of altimeter data for accurately quantifying glacier mass changes. Therefore, we computed glacier mass changes along the Antarctic Peninsula by means of TanDEM-X data.&lt;/p&gt;&lt;p&gt;Additionally, measurements of the IceSAT2 laser altimeter will be integrated in the analysis to improve the estimation of radar signal penetration into snow and firn and thereby reduce the elevation change and mass balance uncertainties.&lt;/p&gt;


2021 ◽  
Vol 87 (11) ◽  
pp. 821-830
Author(s):  
Binbin Li ◽  
Huan Xie ◽  
Shijie Liu ◽  
Xiaohua Tong ◽  
Hong Tang ◽  
...  

Due to its high ranging accuracy, spaceborne laser altimetry technology can improve the accuracy of satellite stereo mapping without ground control points. In the past, full-waveform ICE, CLOUD, and Land Elevation Satellite (ICESat) laser altimeter data have been used as one of the main data sources for global elevation control. As a second-generation satellite, ICESat-2 is equipped with an altimeter using photon counting mode. This can further improve the application capability for stereo mapping because of the six laser beams with high along-track repetition frequency, which can provide more detailed ground contour descriptions. Previous studies have addressed how to extract high-accuracy elevation control points from ICESat data. However, these methods cannot be directly applied to ICESat-2 data because of the different modes of the laser altimeters. Therefore, in this paper, we propose a method using comprehensive evaluation labels that can extract high-accuracy elevation control points that meet the different level elevation accuracy requirements for large scale mapping from the ICESat-2 land-vegetation along-track product. The method was verified using two airborne lidar data sets. In flat, hilly, and mountainous areas, by using our method to extract the terrain elevation, the root-mean-square error of elevation control points decrease from 1.249–2.094 m, 2.237–3.225 m, and 2.791–4.822 m to 0.262–0.429 m, 0.484–0.596 m, and 0.611–1.003 m, respectively. The results show that the extraction elevations meet the required accuracy for large scale mapping.


2005 ◽  
Vol 32 (4) ◽  
pp. n/a-n/a ◽  
Author(s):  
Francesco Mazzarini ◽  
Maria Teresa Pareschi ◽  
Massimiliano Favalli ◽  
Ilaria Isola ◽  
Simone Tarquini ◽  
...  

Author(s):  
Ute Christina Herzfeld ◽  
Matthew Lawson ◽  
Thomas Trantow ◽  
Thomas Nylen

The topic of this paper is the airborne evaluation of ICESat-2 Advanced Topographic Laser Altimeter System (ATLAS) measurement capabilities and surface-height-determination over crevassed glacial terrain, with a focus on the geodetical accuracy of geophysical data collected from a helicopter. To obtain surface heights over crevassed and otherwise complex ice surface, ICESat-2 data are analyzed using the density-dimension algorithm for ice surfaces (DDA-ice), which yields surface heights at the nominal 0.7~m along-track spacing of ATLAS data. As the result of an ongoing surge, Negribreen, Svalbard, provided an ideal situation for the validation objectives in 2018 and 2019, because many different crevasse types and morphologically complex ice surfaces existed in close proximity. Airborne geophysical data, including laser altimeter data (profilometer data at 905~nm frequency), differential Global Positioning System (GPS), Inertial Measurement Unit (IMU) data, on-board-time-lapse imagery and photographs, were collected during two campaigns in summers of 2018 and 2019. Airborne experiment setup, geodetical correction and data processing steps are described here. To date, there is relatively little knowledge of the geodetical accuracy that can be obtained from kinematic data collection from a helicopter. Our study finds that (1)~Kinematic GPS data collection with correction in post-processing yields higher accuracies than Real-Time-Kinematic (RTK) data collection. (2)~Processing of only the rover data using the Natural Resources Canada Spatial Reference System Precise Point Positioning (CSRS-PPP) software is sufficiently accurate for the sub-satellite validation purpose. (3)~Distances between ICESat-2 ground tracks and airborne ground tracks were generally better than 25~m, while distance between predicted and actual ICESat-2 ground track was on the order of 9~m, which allows direct comparison of ice-surface heights and spatial statistical characteristics of crevasses from the satellite and airborne measurements. (4)~The Lasertech Universal Laser System (ULS), operated at up to 300~m above ground level, yields full return frequency (400~Hz) and 0.06-0.08~m on-ice along-track spacing of height measurements. (5)~Cross-over differences of airborne laser altimeter data are 0.1918 $\pm$ 2.385~m along straight paths over generally crevassed terrain, which implies a precision of approximately 2.4~m for ICESat-2 validation experiments. (6)~In summary, the comparatively light-weight experiment setup of a suite of small survey equipment mounted on a Eurocopter (Helicopter AS-350) and kinematic GPS data analyzed in post-processing using CSRS-PPP leads to high accuracy repeats of the ICESat-2 tracks. The technical results (1)-(6) indicate that direct comparison of ice-surface heights and crevasse depths from the ICESat-2 and airborne laser altimeter data is warranted. The final result of the validation is that ICESat-2 ATLAS data, analyzed with the DDA-ice, facilitate surface-height determination over crevassed terrain, in good agreement with airborne data, including spatial characteristics, such as surface roughness, crevasse spacing and depth, which are key informants on the deformation and dynamics of a glacier during surge.


Sign in / Sign up

Export Citation Format

Share Document