scholarly journals Towards Identification of Optimum Radar Parameters for Sea-Ice Monitoring

1985 ◽  
Vol 31 (109) ◽  
pp. 214-219
Author(s):  
Y. S. Kim ◽  
R. K. Moore ◽  
R. G. Onstott ◽  
S. Gogineni

AbstractVarious field experiments have shown that microwave radars can be used to distinguish multi-year from first-year ice, although optimum radar parameters are not yet fully defined.This paper presents the results from two theoretical models that, using selected physical parameters of sea ice, are able to predict the backscattering from multi-year and first-year ice under cold conditions. The possible ranges of the backscattering coefficient under various conditions (surface roughness, salinity, temperature, density, and air-bubble size) are calculated for multi-year and first-year ice by adjusting the parameters within the reported range of values.Although the calculations show no specific resonance that would favor any particular frequency or incidence angles, the results confirm the experimental findings that Ku- and X-band frequencies, and incidence angles greater than 30°, are better for distinguishing sea-ice types than lower frequencies.

1985 ◽  
Vol 31 (109) ◽  
pp. 214-219 ◽  
Author(s):  
Y. S. Kim ◽  
R. K. Moore ◽  
R. G. Onstott ◽  
S. Gogineni

Abstract Various field experiments have shown that microwave radars can be used to distinguish multi-year from first-year ice, although optimum radar parameters are not yet fully defined. This paper presents the results from two theoretical models that, using selected physical parameters of sea ice, are able to predict the backscattering from multi-year and first-year ice under cold conditions. The possible ranges of the backscattering coefficient under various conditions (surface roughness, salinity, temperature, density, and air-bubble size) are calculated for multi-year and first-year ice by adjusting the parameters within the reported range of values. Although the calculations show no specific resonance that would favor any particular frequency or incidence angles, the results confirm the experimental findings that Ku- and X-band frequencies, and incidence angles greater than 30°, are better for distinguishing sea-ice types than lower frequencies.


2016 ◽  
Vol 10 (1) ◽  
pp. 401-415 ◽  
Author(s):  
Ane S. Fors ◽  
Camilla Brekke ◽  
Anthony P. Doulgeris ◽  
Torbjørn Eltoft ◽  
Angelika H. H. Renner ◽  
...  

Abstract. In this study, we investigate the potential of sea ice segmentation by C- and X-band multi-polarisation synthetic aperture radar (SAR) features during late summer. Five high-resolution satellite SAR scenes were recorded in the Fram Strait covering iceberg-fast first-year and old sea ice during a week with air temperatures varying around 0 °C. Sea ice thickness, surface roughness and aerial photographs were collected during a helicopter flight at the site. Six polarimetric SAR features were extracted for each of the scenes. The ability of the individual SAR features to discriminate between sea ice types and their temporal consistency were examined. All SAR features were found to add value to sea ice type discrimination. Relative kurtosis, geometric brightness, cross-polarisation ratio and co-polarisation correlation angle were found to be temporally consistent in the investigated period, while co-polarisation ratio and co-polarisation correlation magnitude were found to be temporally inconsistent. An automatic feature-based segmentation algorithm was tested both for a full SAR feature set and for a reduced SAR feature set limited to temporally consistent features. In C band, the algorithm produced a good late-summer sea ice segmentation, separating the scenes into segments that could be associated with different sea ice types in the next step. The X-band performance was slightly poorer. Excluding temporally inconsistent SAR features improved the segmentation in one of the X-band scenes.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 305
Author(s):  
Agnieszka Klimek-Kopyra ◽  
Urszula Sadowska ◽  
Maciej Kuboń ◽  
Maciej Gliniak ◽  
Jakub Sikora

Climate change has a decisive impact on the physical parameters of soil. To counteract this phenomenon, the ongoing search for more effective agri-technical solutions aims at the improvement of the physical properties of soil over a short time. The study aimed to assess the effect of biochar produced from sunflower husks on soil respiration (SR), soil water flux (SWF), and soil temperature (ST), depending on its dose and different soil cover (with and without vegetation). Moreover, the seed yield was assessed depending on the biochar fertilization. Field experiments were conducted on Calcaric/Dolomitic Leptosols (Ochric soil). SR, ST, and SWT were evaluated seven times in three-week intervals during two seasons, over 2018 and 2019. It was found that the time of biochar application had a significant effect on the evaluated parameters. In the second year, the authors observed significantly (p < 0.005) higher soil respiration (4.38 µmol s−1 m−2), soil temperature (21.2 °C), and the level of water net transfer in the soil (0.38 m mol s−1 m−2), compared to the first year. The most effective biochar dose regarding SR and soybean yield was 60 t ha−1. These are promising results, but a more comprehensive cost-benefit analysis is needed to recommend large-scale biochar use at this dose.


2015 ◽  
Vol 9 (5) ◽  
pp. 4539-4581
Author(s):  
A. S. Fors ◽  
C. Brekke ◽  
A. P. Doulgeris ◽  
T. Eltoft ◽  
A. H. H. Renner ◽  
...  

Abstract. In this study we investigate the potential of sea ice segmentation by C- and X-band multi-polarisation synthetic aperture radar (SAR) features during late summer. Five high-resolution satellite SAR scenes were recorded in the Fram Strait covering iceberg-fast first-year and old sea ice during a week with air temperatures varying around zero degrees Celsius. In situ data consisting of sea ice thickness, surface roughness and aerial photographs were collected during a helicopter flight at the site. Six polarimetric SAR features were extracted for each of the scenes. The ability of the individual SAR features to discriminate between sea ice types and their temporally consistency were examined. All SAR features were found to add value to sea ice type discrimination. Relative kurtosis, geometric brightness, cross-polarisation ratio and co-polarisation correlation angle were found to be temporally consistent in the investigated period, while co-polarisation ratio and co-polarisation correlation magnitude were found to be temporally inconsistent. An automatic feature-based segmentation algorithm was tested both for a full SAR feature set, and for a reduced SAR feature set limited to temporally consistent features. In general, the algorithm produces a good late summer sea ice segmentation. Excluding temporally inconsistent SAR features improved the segmentation at air temperatures above zero degrees Celcius.


2021 ◽  
Vol 13 (4) ◽  
pp. 768
Author(s):  
Sophie Dufour-Beauséjour ◽  
Monique Bernier ◽  
Jérome Simon ◽  
Saeid Homayouni ◽  
Véronique Gilbert ◽  
...  

Radar penetration in brine-wetted snow-covered sea ice is almost nil, yet reports exist of a correlation between snow depth or ice thickness and SAR parameters. This article presents a description of snow depth and first-year sea ice thickness distributions in three fjords of the Hudson Strait and of their tenuous correlation with SAR backscattering in the C- and X-band. Snow depth and ice thickness were directly measured in three fjords of the Hudson Strait from 2015 to 2018 in April or May. Bayesian linear regression analysis was used to investigate their relationship with RADARSAT-2 (C-band) or TerraSAR-X (X-band). Polarimetric ratios and the Cloude–Pottier decomposition parameters were explored along with the HH, HV and VV bands. Linear correlations were generally no higher than 0.3 except for a special case in May 2018. The co-polarization ratio did not perform better than the backscattering coefficients.


Author(s):  
А. М. Grebennikov ◽  
А. S. Frid ◽  
V. P. Belobrov ◽  
V. А. Isaev ◽  
V. М. Garmashоv ◽  
...  

The article assesses the relationships between the morphological properties of agrochernozems and yield of peas on the plots, experience with different methods of basic treatment (moldboard plowing at the depth of 20 - 22, 25 - 27 and 14 - 16 cm, moldboard plowing to a depth of 14 - 16 cm, combined midwater moldboard, mid-water subsurface, surface to a depth of 6 - 8 cm and zero tillage) is inherent in V.V. Dokuchaev Research Institute of Agriculture of the Central Black Earth strip, in the fall of 2014. The research was conducted in 2015 - 2016, with the application of mineral fertilizers (N60Р60К60) and unfertilized background. The highest pea yields in the fertilized as the background, and without the use of fertilizers was observed in dumping plowing and especially in the variant with deep moldboard plowing, which creates in comparison with other ways of handling the best conditions for the growth and development of peas. The lowest yield of pea was obtained with zero processing. Apparently legalistic migrational-mizelial agrochernozems the Central Chernozem zone of minimum tillage in the cultivation of peas are not effective, what is evident already in the first year after the laying of experience with different basic treatments. As shown by the results of applying multifactor analysis of variance studied the mapping properties of the soil can have the same significant impact on the yield of agricultural crops, as options for the field experiments aimed at assessing the impact of various treatments on yield.


2021 ◽  
Vol 11 (12) ◽  
pp. 5415
Author(s):  
Aleksandr Gorst ◽  
Kseniya Zavyalova ◽  
Aleksandr Mironchev ◽  
Andrey Zapasnoy ◽  
Andrey Klokov

The article investigates the near-field probe of a special design to account for changes in glucose concentration. The probe is designed in such a way that it emits radiation in both directions from its plane. In this paper, it was proposed to modernize this design and consider the unidirectional emission of the probe in order to maximize the signal and reduce energy loss. We have done extensive research for both bidirectional and unidirectional probe designs. Numerical simulations and field experiments were carried out to determine different concentrations of glucose (0, 4, 5.3, 7.5 mmol/L). Numerical modeling of a unidirectional probe showed that the interaction of radiation generated by such a probe with a multilayer structure simulating a human hand showed a better result and high sensitivity compared to a bidirectional probe. Further, based on the simulation results, a phantom (physical model) of a human hand was recreated from layers with dielectric properties as close as possible to the properties of materials during simulation. The probe was constructed from a copper tube and matched both the geometric and physical parameters of the model. The experimental measurement was carried out using a vector network analyzer in the frequency range 2–10 GHz. The experimental measurement was carried out using a vector network analyzer in the frequency range 2–10 GHz for the unidirectional and bidirectional probes. Further, the results of the experiment were compared with the results of numerical simulation. According to the results of multiple experiments, it was found that the average deviation between the concentrations was 2 dB for a unidirectional probe and 0.4 dB for a bidirectional probe. Thus, the sensitivity of the unidirectional probe was 1.5 dB/(mmol/L) for the bidirectional one 0.3 dB/(mmol/L). Thus, the improved design of the near-field probe can be used to record glucose concentrations.


Weed Science ◽  
1985 ◽  
Vol 33 (1) ◽  
pp. 50-56 ◽  
Author(s):  
Stephen C. Weller ◽  
Walter A. Skroch ◽  
Thomas J. Monaco

Field experiments conducted over a 2-yr period demonstrated that common bermudagrass [Cynodon dactylon (L.) Pers. # CYNDA] inhibited growth of newly planted peach (Prunus persica L. ‘Norman’) trees. Common bermudagrass densities of 100, 75, 50, and 25% ground cover reduced tree fresh weight by 86, 64, 43, and 19%, respectively, the first year (1978) and 87, 62, 44, and 28%, respectively, the second year (1979) after planting. Tree trunk diameter relative growth rate (RGR) was reduced by 75 and 100% common bermudagrass ground cover densities at all measurement dates only in 1978. Tree leaf N and K were reduced in both years by common bermudagrass; however, only at the 100% common bermudagrass density in 1978 was N at a deficient level. Leaf chlorophyll was reduced in trees grown in all densities of common bermudagrass only in 1978. Reduced tree growth cannot be explained entirely by competition for essential nutrients; thus an allelopathic effect of the bermudagrass on young peach roots is suspected.


Sign in / Sign up

Export Citation Format

Share Document