scholarly journals Snow–Avalanche Impact on Structures

1980 ◽  
Vol 25 (93) ◽  
pp. 445-455 ◽  
Author(s):  
Theodore E. Lang ◽  
Robert L. Brown

AbstractTwo–dimensional hydrodynamic equations for laminar, viscous flow, and admitting a frictional slip-plane lower boundary are applied to the modeling of snow-avalanche impact on rigid wall structures. Predicted maximum pressures and pressures versus time are compared with published experimental results, and general correspondence is established. Impact pressure versus time is found to depend upon the shape of the avalanche leading edge, for which general information is lacking. Computer modeling of more complex structural configurations is feasible using the methodology reported.

1980 ◽  
Vol 25 (93) ◽  
pp. 445-455 ◽  
Author(s):  
Theodore E. Lang ◽  
Robert L. Brown

AbstractTwo–dimensional hydrodynamic equations for laminar, viscous flow, and admitting a frictional slip-plane lower boundary are applied to the modeling of snow-avalanche impact on rigid wall structures. Predicted maximum pressures and pressures versus time are compared with published experimental results, and general correspondence is established. Impact pressure versus time is found to depend upon the shape of the avalanche leading edge, for which general information is lacking. Computer modeling of more complex structural configurations is feasible using the methodology reported.


2018 ◽  
Vol 848 ◽  
pp. 411-429 ◽  
Author(s):  
Edward M. Hinton ◽  
Andrew W. Woods

We examine the injection of fluid of one viscosity and density into a horizontal permeable aquifer initially saturated with a second fluid of different viscosity and density. The novel feature of the analysis is that we allow the permeability to vary vertically across the aquifer. This leads to recognition that the interface may evolve as either a rarefaction wave that spreads at a rate proportional to $t$, a shock-like front of fixed length or a mixture of shock-like regions and rarefaction-wave-type regions. The classical solutions in which there is no viscosity ratio between the fluids and in which the formation has constant permeability lead to an interface that spreads laterally at a rate proportional to $t^{1/2}$. However, these solutions are unstable to cross-layer variations in the permeability owing to the vertical shear which develops in the flow, causing the structure of the interface to evolve to the rarefaction wave or shock-like structure. In the case that the viscosities of the two fluids are different, it is possible that the solution involves a mixture of shock-like and rarefaction-type structures as a function of the distance above the lower boundary. Using the theory of characteristics, we develop a regime diagram to delineate the different situations. We consider the implications of such heterogeneity for the prediction of front locations during $\text{CO}_{2}$ sequestration. If we neglect the permeability fluctuations, the model always predicts rarefaction-type solutions, while even modest changes in the permeability across a layer can introduce shocks. This difference may be very significant since it leads to the $\text{CO}_{2}$ plume occupying a greater fraction of the pore space between the injector and the leading edge of the $\text{CO}_{2}$ front in a layer of the same mean permeability. This has important implications for estimates of the fraction of the pore space that the $\text{CO}_{2}$ may access.


2021 ◽  
Author(s):  
Adam J. Cawood ◽  
David A. Ferrill ◽  
Alan P. Morris ◽  
David Norris ◽  
David McCallum ◽  
...  

<p>The Orphan Basin on the eastern edge of the Newfoundland continental margin formed as a Mesozoic rift basin prior to continental breakup associated with the opening of the North Atlantic. Few exploration wells exist in the basin, and until recently regional interpretations have been based on sparse seismic data coverage - because of this the structural evolution of the Orphan Basin has historically not been well understood. Key uncertainties include the timing and amount of rift-related extension, dominant extension directions, and the structural styles that accommodated progressive rift development in the basin.     </p><p>Interpretation of newly acquired modern broadband seismic data and structural restoration of three regional, WNW-ESE oriented cross-sections across the Orphan Basin and Flemish Cap provide new insights into rift evolution and structural style in the area. Our results show that major extension in the basin occurred between 167 Ma and 135 Ma, with most extension occurring prior to 151 Ma. We show that extension after 135 Ma largely occurred east of Flemish Cap due to a shift in the locus of rifting from the Orphan Basin to east of Flemish Cap. We find no evidence for discrete rifting events in the Orphan Basin, as has been suggested by other authors.  Kinematic restoration and associated heave measurements for the Orphan Basin show that extension was both widespread and relatively evenly distributed across the basin from Middle-Late Jurassic to Early Cretaceous.</p><p>We provide evidence for more widespread deposition of Jurassic strata throughout the Orphan Basin than previously interpreted, and show that Jurassic deposition was controlled by the occurrence and displacement of crustal-scale extensional detachment faults.  Structure in the three regional cross sections is dominated by large-scale, shallowly dipping extensional detachment faults. These faults mainly dip to the northwest and control the geometry and position of extensional basins – grabens and half-grabens – which occur at a range of scales. Stacked detachment surfaces, hyperextension, and attenuation of the crust are observed in central and eastern parts of the Orphan Basin. Zones of extreme crustal attenuation (to ca. 3.7 km) are interpreted to be coincident with large-displacement (up to 60 km) low-angle detachments. Results from crustal area balancing suggest that up to 41% of extension is not recognized through structural seismic interpretation, which we attribute to subseismic-scale ductile and brittle deformation, and uncertainties in the identification of detachment surfaces or complex structural configurations (e.g., overprinting of early extensional deformation).</p><p>Rifting style in the central, northern, and eastern parts of the Orphan Basin is dominated by low-angle detachment faulting with maximum extension perpendicular to the incipient rift axis. In contrast, structural geometries in the southwestern part of the basin are suggestive of transtensional deformation, and interplay of normal and strike-slip faulting.  Results from map-based interpretation show that strike-slip faults within this transtensional zone are associated with displacement transfer between half-grabens of opposing polarity, rather than regional strike-slip displacement.  These structures are interpreted as contemporaneous and kinematically linked to displacement along low-angle detachment surfaces elsewhere, and are not attributed to distinct episodes of oblique extension.       </p>


Author(s):  
Ye-Bonne Koyama Maldonado ◽  
Gregory Delattre ◽  
Cedric Illoul ◽  
Clement Dejeu ◽  
Laurent Jacquin

Leading-edge vortex flows are often present on propeller blades at take-off, however, their characteristics and aerodynamic impact are still not fully understood. An experimental investigation using Time Resolved Particle Image Velocimetry (TR-PIV) has been performed on a model blade in order to classify this flow with respect to both delta wing leading-edge vortices and the low Reynolds number studies regarding leading-edge vortices on rotating blades. A numerical calculation of the experimental setup has been performed in order to assess usual numerical methods for propeller performance prediction against TR-PIV results. Similar characteristics were found with non slender delta wing vortices at low incidence, which hints that the leading-edge vortex flow may generate vortex lift. The influence of rotation on the characteristics of the leading-edge vortex is compared to that of the pressure gradient caused by the circulation distribution. A discussion on the quality of the PIV reconstruction for close-wall structures is provided.


1986 ◽  
Vol 39 (10) ◽  
pp. 1517-1524 ◽  
Author(s):  
George J. Simitses

Thin-walled cylinders of various constructions are widely used in simple or complex structural configurations. The round cylinder is commonly found in tubing and piping, and in offshore platforms. Depending on their use, these cylinders are subjected (in service) to individual and combined application of external loads. In resisting these loads the system is subject to buckling, a failure mode which is closely associated with the establishment of its load-carrying capacity. Therefore, the system buckling and postbuckling behavior have been the subject of many researchers and investigators both analytical and experimental. The paper is a state-of-the-art survey of the general area of buckling and postbuckling of thin-walled, geometrically imperfect, cylinders of various constructions, when subjected to destabilizing loads. The survey includes discussion of imperfection sensitivity and of the effect of various defects on the critical conditions.


Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1104 ◽  
Author(s):  
Xin Ma ◽  
Ran Tu ◽  
Xudong Cheng ◽  
Shuguang Zhu ◽  
Jinwei Ma ◽  
...  

Both experimental and theoretical methods were proposed to assess the effects of adjacent, parallel, and symmetric exterior wall structures on the combustion and flame spreading characteristics of rigid polyurethane (PUR) foam insulation. During the combustion of PUR specimens, the flame leading edge was found to transfer from a unique inverted ‘W’ shape to an inverted ‘V’ during flame propagation. This phenomenon is attributed to edge effects related to boundary layer theory. The effects of the adjacent façade angle on flame spreading rate and flame height were shown to be nonlinear, as a result of the combined influences of heat transfer, radiation angle, and the chimney restriction effects. A critical angle around 90 degree with maximum thermal hazards outwards by parallel fire was observed and consistent with the mass loss rate and flame height tendencies. For narrow spacing configurations or angles (e.g., 60 and 90 degrees), phenomenological two-pass processing in conjunction showed that increased preheating lengths were associated with enhanced heat transfer. The results of this study have implications concerning the design of safe façade structures for high-rise buildings, and provide a better understanding of downward flame spreading over PUR.


1995 ◽  
Vol 293 ◽  
pp. 349-378 ◽  
Author(s):  
O. E. Jensen

The unsteady spreading of an insoluble monolayer containing a fixed mass of surface-active material over the initially horizontal free surface of a viscous fluid layer is investigated. A flow driving the spreading is induced by gradients in surface tension, which arise from the nonuniform surfactant distribution. Distinct phases in the flow's dynamics are distinguished by a time T = H02/v, where H0 is the fluid depth and v its viscosity. For times t [Lt ] T, i.e. before the lower boundary has any significant influence on the flow, a laminar sub-surface boundary-layer flow is generated. The effects of gravity, capillarity, surface diffusion or surface contamination may be weak enough for the flow to drive a substantial unsteady displacement of the free surface, upward behind the monolayer's leading edge and downward towards its centre. Similarity solutions are identified describing the spreading of a localized planar monolayer strip (which spreads like t1/2) or an axisymmetric drop (which spreads like t3/8); using the Prandtl transformation, the associated boundary-layer problems are solved numerically. Quasi-steady sub-layers are shown to exist at the centre and at the leading edge of the monolayer; that due to surface contamination, for example, may eventually grow to dominate the flow, in which case spreading proceeds like t3/4. Once t = O(T), vorticity created at the free surface has diffused down to the lower boundary and the flow changes character, slowing appreciably. The dynamics of this stage are modelled by reducing the problem to a single nonlinear diffusion equation. For a spreading monolayer strip or drop, the transition from an inertia-dominated (boundary-layer) flow to a viscosity-dominated (thin-film) flow is predicted to be largely complete once t ≈ 85 T.


2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Decao Yin ◽  
Halvor Lie ◽  
Jie Wu

Abstract Exploration of oil and gas in deep and ultra-deepwater under harsh weather condition is challenging. A steel lazy wave riser (SLWR) is considered to be a cost-effective alternative to get the gas or oil flow up to the platform under these conditions. The staggered buoyant section provides buoyancy force which forms an arch shape of the SLWR. This arch shape makes the SLWR configuration flexible and isolates the dynamic responses of the upper part and lower part of the riser. However, there is a lack of full understanding of the behavior of SLWRs. This is, due to a complicated loading from waves, vessel motions and flow induced vibrations caused by ocean currents, complex structural configurations, and non-linearities. Time-domain simulation is necessary to accurately predict the dynamic responses and capture the non-linearities. Realistic fatigue damage calculation is essential in the design phase of SLWR. The design of SLWR could be optimized with a better understanding of the dynamic responses of SLWR.


Sign in / Sign up

Export Citation Format

Share Document