scholarly journals Experimental Study of Thermal Behavior of Insulation Material Rigid Polyurethane in Parallel, Symmetric, and Adjacent Building Façade Constructions

Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1104 ◽  
Author(s):  
Xin Ma ◽  
Ran Tu ◽  
Xudong Cheng ◽  
Shuguang Zhu ◽  
Jinwei Ma ◽  
...  

Both experimental and theoretical methods were proposed to assess the effects of adjacent, parallel, and symmetric exterior wall structures on the combustion and flame spreading characteristics of rigid polyurethane (PUR) foam insulation. During the combustion of PUR specimens, the flame leading edge was found to transfer from a unique inverted ‘W’ shape to an inverted ‘V’ during flame propagation. This phenomenon is attributed to edge effects related to boundary layer theory. The effects of the adjacent façade angle on flame spreading rate and flame height were shown to be nonlinear, as a result of the combined influences of heat transfer, radiation angle, and the chimney restriction effects. A critical angle around 90 degree with maximum thermal hazards outwards by parallel fire was observed and consistent with the mass loss rate and flame height tendencies. For narrow spacing configurations or angles (e.g., 60 and 90 degrees), phenomenological two-pass processing in conjunction showed that increased preheating lengths were associated with enhanced heat transfer. The results of this study have implications concerning the design of safe façade structures for high-rise buildings, and provide a better understanding of downward flame spreading over PUR.

Aerospace ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 96
Author(s):  
Abdallah Samad ◽  
Eric Villeneuve ◽  
Caroline Blackburn ◽  
François Morency ◽  
Christophe Volat

Successful icing/de-icing simulations for rotorcraft require a good prediction of the convective heat transfer on the blade’s surface. Rotorcraft icing is an unwanted phenomenon that is known to cause flight cancelations, loss of rotor performance and severe vibrations that may have disastrous and deadly consequences. Following a series of experiments carried out at the Anti-icing Materials International Laboratory (AMIL), this paper provides heat transfer measurements on heated rotor blades, under both the anti-icing and de-icing modes in terms of the Nusselt Number (Nu). The objective is to develop correlations for the Nu in the presence of (1) an ice layer on the blades (NuIce) and (2) liquid water content (LWC) in the freestream with no ice (NuWet). For the sake of comparison, the NuWet and the NuIce are compared to heat transfer values in dry runs (NuDry). Measurements are reported on the nose of the blade-leading edge, for three rotor speeds (Ω) = 500, 900 and 1000 RPM; a pitch angle (θ) = 6°; and three different radial positions (r/R), r/R = 0.6, 0.75 and 0.95. The de-icing tests are performed twice, once for a glaze ice accretion and another time for rime ice. Results indicate that the NuDry and the NuWet directly increased with V∝, r/R or Ω, mainly due to an increase in the Reynolds number (Re). Measurements indicate that the NuWet to NuDry ratio was always larger than 1 as a direct result of the water spray addition. NuIce behavior was different and was largely affected by the ice thickness (tice) on the blade. However, the ice acted as insulation on the blade surface and the NuIce to NuDry ratio was always less than 1, thus minimizing the effect of convection. Four correlations are then proposed for the NuDry, the NuWet and the NuIce, with an average error between 3.61% and 12.41%. The NuDry correlation satisfies what is expected from heat transfer near the leading edge of an airfoil, where the NuDry correlates well with Re0.52.


2020 ◽  
Author(s):  
V. L. Kocharin ◽  
A. A. Yatskikh ◽  
D. S. Prishchepova ◽  
A. V. Panina ◽  
Yu. G. Yermolaev ◽  
...  

2021 ◽  
Vol 13 (13) ◽  
pp. 7115
Author(s):  
Mostafa Kazemi ◽  
Luc Courard ◽  
Julien Hubert

A green roof is composed of a substrate and drainage layers which are fixed on insulation material and roof structure. The global heat resistance (Rc) within a green roof is affected by the humidity content of the substrate layer in which the coarse recycled materials can be used. Moreover, the utilization of recycled coarse aggregates such as incinerated municipal solid waste aggregate (IMSWA) for the drainage layer would be a promising solution, increasing the recycling of secondary resources and saving natural resources. Therefore, this paper aims to investigate the heat transfer across green roof systems with a drainage layer of IMSWA and a substrate layer including recycled tiles and bricks in wet and dry states according to ISO-conversion method. Based on the results, water easily flows through the IMSWAs with a size of 7 mm. Meanwhile, the Rc-value of the green roof system with the dry substrate (1.26 m2 K/W) was 1.7 times more than that of the green roof system with the unsaturated substrate (0.735 m2 K/W). This means that the presence of air-spaces in the dry substrate provided more heat resistance, positively contributing to heat transfer decrease, which is also dependent on the drainage effect of IMSWA. In addition, the Rc-value of the dry substrate layer was about twice that of IMSWA as the drainage layer. No significant difference was observed between the Rc-values of the unsaturated substrate layer and the IMSWA layer.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 689
Author(s):  
Thomas Eppinger ◽  
Nico Jurtz ◽  
Matthias Kraume

Fixed bed reactors are widely used in the chemical, nuclear and process industry. Due to the solid particle arrangement and its resulting non-homogeneous radial void fraction distribution, the heat transfer of this reactor type is inhibited, especially for fixed bed reactors with a small tube to particle diameter ratio. This work shows that, based on three-dimensional particle-resolved discrete element method (DEM) computational fluid dynamics (CFD) simulations, it is possible to reduce the maldistribution of mono-dispersed spherical particles near the reactor wall by the use of macroscopic wall structures. As a result, the lateral convection is significantly increased leading to a better radial heat transfer. This is investigated for different macroscopic wall structures, different air flow rates (Reynolds number Re = 16 ...16,000) and a variation of tube to particle diameter ratios (2.8, 4.8, 6.8, 8.8). An increase of the radial velocity of up to 40%, a reduction of the thermal entry length of 66% and an overall heat transfer increase of up to 120% are found.


2021 ◽  
pp. 1-17
Author(s):  
K. Xiao ◽  
J. He ◽  
Z. Feng

ABSTRACT This paper proposes an alternating elliptical impingement chamber in the leading edge of a gas turbine to restrain the cross flow and enhance the heat transfer, and investigates the detailed flow and heat transfer characteristics. The chamber consists of straight sections and transition sections. Numerical simulations are performed by solving the three-dimensional (3D) steady Reynolds-Averaged Navier–Stokes (RANS) equations with the Shear Stress Transport (SST) k– $\omega$ turbulence model. The influences of alternating the cross section on the impingement flow and heat transfer of the chamber are studied by comparison with a smooth semi-elliptical impingement chamber at a cross-flow Velocity Ratio (VR) of 0.2 and Temperature Ratio (TR) of 1.00 in the primary study. Then, the effects of the cross-flow VR and TR are further investigated. The results reveal that, in the semi-elliptical impingement chamber, the impingement jet is deflected by the cross flow and the heat transfer performance is degraded. However, in the alternating elliptical chamber, the cross flow is transformed to a pair of longitudinal vortices, and the flow direction at the centre of the cross section is parallel to the impingement jet, thus improving the jet penetration ability and enhancing the impingement heat transfer. In addition, the heat transfer in the semi-elliptical chamber degrades rapidly away from the stagnation region, while the longitudinal vortices enhance the heat transfer further, making the heat transfer coefficient distribution more uniform. The Nusselt number decreases with increase of VR and TR for both the semi-elliptical chamber and the alternating elliptical chamber. The alternating elliptical chamber enhances the heat transfer and moves the stagnation point up for all VR and TR, and the heat transfer enhancement is more obvious at high cross-flow velocity ratio.


1984 ◽  
Vol 106 (1) ◽  
pp. 222-228 ◽  
Author(s):  
M. L. Marziale ◽  
R. E. Mayle

An experimental investigation was conducted to examine the effect of a periodic variation in the angle of attack on heat transfer at the leading edge of a gas turbine blade. A circular cylinder was used as a large-scale model of the leading edge region. The cylinder was placed in a wind tunnel and was oscillated rotationally about its axis. The incident flow Reynolds number and the Strouhal number of oscillation were chosen to model an actual turbine condition. Incident turbulence levels up to 4.9 percent were produced by grids placed upstream of the cylinder. The transfer rate was measured using a mass transfer technique and heat transfer rates inferred from the results. A direct comparison of the unsteady and steady results indicate that the effect is dependent on the Strouhal number, turbulence level, and the turbulence length scale, but that the largest observed effect was only a 10 percent augmentation at the nominal stagnation position.


2014 ◽  
Vol 664 ◽  
pp. 199-203 ◽  
Author(s):  
Wei Guang An ◽  
Lin Jiang ◽  
Jin Hua Sun ◽  
K.M. Liew

An experimental study on downward flame spread over extruded polystyrene (XPS) foam at a high elevation is presented. The flame shape, flame height, mass loss rate and flame spread rate were measured. The influences of width and high altitude were investigated. The flame fronts are approximately horizontal. Both the intensity of flame pulsation and the average flame height increase with the rise of sample width. The flame spread rate first drops and then rises with an increase in width. The average flame height, mass loss rate and flame spread rate at the higher elevation is smaller than that at a low elevation, which demonstrates that the XPS fire risk at the higher elevation area is lower. The experimental results agree well with the theoretical analysis. This work is vital to the fire safety design of building energy conservation system.


Sign in / Sign up

Export Citation Format

Share Document