scholarly journals Morphology of the Ice-sheet Margin Near Thule, Greenland

1970 ◽  
Vol 9 (57) ◽  
pp. 303-324 ◽  
Author(s):  
Roger Leb. Hooke

Three types of glacier margin are found along the edge of the Greenland ice sheet near Thule: ice cliffs, ramps and ice-cored moraines. Where the glacier margin is perpendicular to prevailing katabatic winds, drifting snow accumulates along it in stagnant wind-drill ice wedges. Upward flow of active ice behind these wedges causes ice originally near the base of the glacier to rise to the surface. Where this basal ice is free of debris, a gently sloping ramp develops. However, where the basal ice contains sufficient debris, a layer of till accumulates on the glacier surface. Ice beneath the till is insulated and a debris-capped ice ridge or ice-cored moraine forms, Ice cliffs occur where the ice-sheet margin is parallel to prevailing winds and is thus swept clear of drifting snow. Although the ice sheet in the Thule area appears to have had a negative mass balance for many years, all three types of glacier margin are believed to be equilibrium forms that can develop and persist on a glacier with a balanced mass budget.Foliation in wind-drift ice wedges generally dips down-glacier but foliation in active ice dips up-glacier. It is inferred that foliation in the wedges was once sedimentary stratification that has been tipped upward and locally overturned.

1970 ◽  
Vol 9 (57) ◽  
pp. 303-324 ◽  
Author(s):  
Roger Leb. Hooke

Three types of glacier margin are found along the edge of the Greenland ice sheet near Thule: ice cliffs, ramps and ice-cored moraines. Where the glacier margin is perpendicular to prevailing katabatic winds, drifting snow accumulates along it in stagnant wind-drill ice wedges. Upward flow of active ice behind these wedges causes ice originally near the base of the glacier to rise to the surface. Where this basal ice is free of debris, a gently sloping ramp develops. However, where the basal ice contains sufficient debris, a layer of till accumulates on the glacier surface. Ice beneath the till is insulated and a debris-capped ice ridge or ice-cored moraine forms, Ice cliffs occur where the ice-sheet margin is parallel to prevailing winds and is thus swept clear of drifting snow. Although the ice sheet in the Thule area appears to have had a negative mass balance for many years, all three types of glacier margin are believed to be equilibrium forms that can develop and persist on a glacier with a balanced mass budget.Foliation in wind-drift ice wedges generally dips down-glacier but foliation in active ice dips up-glacier. It is inferred that foliation in the wedges was once sedimentary stratification that has been tipped upward and locally overturned.


2002 ◽  
Vol 48 (161) ◽  
pp. 192-198 ◽  
Author(s):  
Peter G. Knight ◽  
Richard I. Waller ◽  
Carrie J. Patterson ◽  
Alison P. Jones ◽  
Zoe P. Robinson

AbstractSediment production at a terrestrial section of the ice-sheet margin in West Greenland is dominated by debris released through the basal ice layer. The debris flux through the basal ice at the margin is estimated to be 12–45 m3 m−1 a−1. This is three orders of magnitude higher than that previously reported for East Antarctica, an order of magnitude higher than sites reported from in Norway, Iceland and Switzerland, but an order of magnitude lower than values previously reported from tidewater glaciers in Alaska and other high-rate environments such as surging glaciers. At our site, only negligible amounts of debris are released through englacial, supraglacial or subglacial sediment transfer. Glaciofluvial sediment production is highly localized, and long sections of the ice-sheet margin receive no sediment from glaciofluvial sources. These findings differ from those of studies at more temperate glacial settings where glaciofluvial routes are dominant and basal ice contributes only a minor percentage of the debris released at the margin. These data on debris flux through the terrestrial margin of an outlet glacier contribute to our limited knowledge of debris production from the Greenland ice sheet.


2021 ◽  
Author(s):  
Marco Möller ◽  
Beatriz Recinos ◽  
Ben Marzeion

<p>The Greenland Ice Sheet is losing mass at increasing rates. Substantial amounts of this mass loss occur by ice discharge. The ice sheet is surrounded by thousands of peripheral glaciers, which are dynamically decoupled from the ice sheet, and which account for ~10 % of the global glacier ice volume outside the two main ice sheets. Rather low-lying along the coasts, these peripheral glaciers are also losing mass at increasing, but disputed, rates. The total absence of knowledge about the role and share of solid ice discharge in this mass loss adds to the controversy. Since the quantification of ice discharge is still pending, a full understanding of ice mass loss processes in this globally important glacier region is substantially hampered.</p><p>Here, we present the first estimation of ice discharge from Greenland's peripheral tidewater glaciers. For each of these 760 glaciers, we combine an idealized rectangular flux gate cross sections derived from modelling with the Open Global Glacier Model with surface ice flow velocities derived from the ITS_LIVE and MEaSUREs remote sensing datasets to calculate glacier specific ice discharge on both annual and multi-annual time scales over the period 1985 to 2018. For the few glaciers not covered by either of the employed original datasets or modelling methods we use a regression tree-based extrapolation scheme to estimate the necessary input data for our calculation.</p><p>Our findings indicate a significant overall increase of ice discharge over the study period although several individual glaciers show contrasting developments. This increase became especially apparent across the southern parts of Greenland. Our results also show that the total of the ice discharge from Greenland's peripheral tidewater glaciers is dominated by few major contributors and that this dominance is completely time-independent.</p>


1990 ◽  
Vol 14 ◽  
pp. 356 ◽  
Author(s):  
Niels Reeh ◽  
Anne Letréguilly ◽  
Hans Oerter

About 1500 surface-ice samples for δ18O analysis were collected in the 1988 field season along a 750 m profile perpendicular to the margin of the Greenland ice sheet at Pakitsoq, ca 40 km north-east of Jakobshavn, central West Greenland. The purpose of the study was to evaluate how well the continuity of the layer sequence is preserved in ice-margin records, a question of crucial importance for evaluating the potential yield of using ice margins as “mining areas” for easily accessible old ice for climate and environmental studies. More than half of the 1500 samples were taken continuously as 20 cm samples along a 170 m section through the Wisconsinan-Holocene transition which, previously, had been located at the surface of the ice margin. Along this transition section δ18O values decrease by about 6‰ from −31.5 to 37.5‰ on an average. Detailed studies were made of surface elevations and surface structures (e.g. blue bands) along the “horizontal core” profile which, moreover, was photographed section by section, thus enabling the δ-record to be correlated with surface features. Results of the δ18O analyses are promising. Even though ice from the blue bands has δ-values that are 7–8‰ higher than those of the surrounding white ice, there seems to be no discontinuity in the white-ice δ-record across the blue bands.


2019 ◽  
Vol 16 (16) ◽  
pp. 3283-3296 ◽  
Author(s):  
Alexandra T. Holland ◽  
Christopher J. Williamson ◽  
Fotis Sgouridis ◽  
Andrew J. Tedstone ◽  
Jenine McCutcheon ◽  
...  

Abstract. Glaciers and ice sheets host abundant and dynamic communities of microorganisms on the ice surface (supraglacial environments). Recently, it has been shown that Streptophyte glacier algae blooming on the surface ice of the south-western coast of the Greenland Ice Sheet are a significant contributor to the 15-year marked decrease in albedo. Currently, little is known about the constraints, such as nutrient availability, on this large-scale algal bloom. In this study, we investigate the relative abundances of dissolved inorganic and dissolved organic macronutrients (N and P) in these darkening surface ice environments. Three distinct ice surfaces, with low, medium and high visible impurity loadings, supraglacial stream water and cryoconite hole water, were sampled. Our results show a clear dominance of the organic phase in all ice surface samples containing low, medium and high visible impurity loadings, with 93 % of the total dissolved nitrogen and 67 % of the total dissolved phosphorus in the organic phase. Mean concentrations in low, medium and high visible impurity surface ice environments are 0.91, 0.62 and 1.0 µM for dissolved inorganic nitrogen (DIN), 5.1, 11 and 14 µM for dissolved organic nitrogen (DON), 0.03, 0.07 and 0.05 µM for dissolved inorganic phosphorus (DIP) and 0.10, 0.15 and 0.12 µM for dissolved organic phosphorus (DOP), respectively. DON concentrations in all three surface ice samples are significantly higher than DON concentrations in supraglacial streams and cryoconite hole water (0 and 0.7 µM, respectively). DOP concentrations are higher in all three surface ice samples compared to supraglacial streams and cryoconite hole water (0.07 µM for both). Dissolved organic carbon (DOC) concentrations increase with the amount of visible impurities present (low: 83 µM, medium: 173 µM and high: 242 µM) and are elevated compared to supraglacial streams and cryoconite hole water (30 and 50 µM, respectively). We speculate that the architecture of the weathering crust, which impacts on water flow paths and storage in the melting surface ice and/or the production of extracellular polymeric substances (EPS), containing both N and P in conjunction with C, is responsible for the temporary retention of DON and DOP in the melting surface ice. The unusual presence of measurable DIP and DIN, principally as NH4+, in the melting surface ice environments suggests that factors other than macronutrient limitation are controlling the extent and magnitude of the glacier algae.


2013 ◽  
Vol 26 (1) ◽  
pp. 93-103 ◽  
Author(s):  
H.S. Gusain ◽  
V.D. Mishra ◽  
M.K. Arora

AbstractSurface energy fluxes of the ice sheet close to oases (ice-free land regions) are crucial in the case of retreating ice sheet and growing oasis areas. This study presents a four-year record of the meteorological parameters, radiative and turbulent energy fluxes at the edge of the Antarctic ice sheet, close to Schirmacher Oasis in Dronning Maud Land, East Antarctica from March 2007–February 2011. The energy fluxes were analysed for summer season, winter season and transition periods. High katabatic winds were observed during winter (seasonal mean 9.3 m s-1) as compared to other seasons. A high correlation (r2 = 0.89) was observed between the glacier surface temperature and air temperature, and regression relations were obtained for summer, winter and transition periods. The net radiative flux was the main heat source to the glacier during summer (46.8 W m-2) and heat sink during winter (-42.2 W m-2). Sensible heat flux (annual mean 32 W m-2) was the heat source and latent heat flux (annual mean -61 W m-2) was the heat sink to the glacier surface, averaged over all seasons. Comparison with other coastal or dry valley locations in Antarctica show that low humidity (50%), high katabatic winds (8.3 m s-1) and mild surface (-11.4°C) and air temperature (-10.2°C) contribute to high latent heat flux at the present study location.


2007 ◽  
Vol 53 (183) ◽  
pp. 646-658 ◽  
Author(s):  
Roger LeB. Hooke ◽  
James Fastook

The University of Maine Ice Sheet Model was used to study basal conditions during retreat of the Laurentide ice sheet in Maine. Within 150 km of the margin, basal melt rates average ∼5 mm a−1 during retreat. They decline over the next 100 km, so areas of frozen bed develop in northern Maine during retreat. By integrating the melt rate over the drainage area typically subtended by an esker, we obtained a discharge at the margin of ~1.2 m3 s-1. While such a discharge could have moved the material in the Katahdin esker, it was likely too low to build the esker in the time available. Additional water from the glacier surface was required. Temperature gradients in the basal ice increase rapidly with distance from the margin. By conducting upward into the ice all of the additional viscous heat produced by any perturbation that increases the depth of flow in a flat conduit in a distributed drainage system, these gradients inhibit the formation of sharply arched conduits in which an esker can form. This may explain why eskers commonly seem to form near the margin and are typically segmented, with later segments overlapping onto earlier ones.


2014 ◽  
Vol 8 (2) ◽  
pp. 801-814 ◽  
Author(s):  
J. T. M. Lenaerts ◽  
C. J. P. P. Smeets ◽  
K. Nishimura ◽  
M. Eijkelboom ◽  
W. Boot ◽  
...  

Abstract. This paper presents autonomous drifting snow observations performed on the Greenland Ice Sheet in the fall of 2012. High-frequency snow particle counter (SPC) observations at ~ 1 m above the surface provided drifting snow number fluxes and size distributions; these were combined with meteorological observations at six levels. We identify two types of drifting snow events: katabatic events are relatively cold and dry, with prevalent winds from the southeast, whereas synoptic events are short lived, warm and wet. Precipitating snow during synoptic events disturbs the drifting snow measurements. Output of the regional atmospheric climate model RACMO2, which includes the drifting snow routine PIEKTUK-B, agrees well with the observed near-surface climate at the site, as well as with the frequency and timing of drifting snow events. Direct comparisons with the SPC observations at 1 m reveal that the model overestimates the horizontal snow transport at this level, which can be related to an overestimation of saltation and the typical size of drifting snow particles.


2014 ◽  
Vol 8 (2) ◽  
pp. 1453-1477 ◽  
Author(s):  
B. Noël ◽  
X. Fettweis ◽  
W. J. van de Berg ◽  
M. R. van den Broeke ◽  
M. Erpicum

Abstract. During recent summers (2007–2012), several surface melt records were broken over the Greenland Ice Sheet (GrIS). The extreme summer melt resulted in part from a persistent negative phase of the North-Atlantic Oscillation (NAO), favouring warmer than normal conditions over the GrIS. In addition, it has been suggested that significant anomalies in sea ice cover (SIC) and sea surface temperature (SST) may partially explain recent anomalous GrIS surface melt. To assess the impact of 2007–2012 SIC and SST anomalies on GrIS surface mass balance (SMB), a set of sensitivity experiments was carried out with the regional climate model MAR. These simulations suggest that changes in SST and SIC in the seas surrounding Greenland do not significantly impact GrIS SMB, due to the katabatic winds blocking effect. These winds are strong enough to prevent oceanic near-surface air, influenced by SIC and SST variability, from penetrating far inland. Therefore, the ice sheet SMB response is restricted to coastal regions, where katabatic winds are weaker. However, anomalies in SIC and SST could have indirectly affected the surface melt by changing the general circulation in the North Atlantic region, favouring more frequent warm air advection to the GrIS.


Sign in / Sign up

Export Citation Format

Share Document