scholarly journals Regelation and the Deformation of Wet Snow

1978 ◽  
Vol 21 (85) ◽  
pp. 639-650 ◽  
Author(s):  
S. C. Colbeck ◽  
N. Parssinen

AbstractThe thermodynamics of phase equilibrium control the temperature distribution around the ice particles in wet snow. When the snow is stressed, pressure melting occurs at the inter-particle contacts and the snow densifies. Densification is described by a physical model which simulates the heat flow, meltwater flow, and particle geometry. The effects of ionic impurities, liquid saturation, and particle size are demonstrated. Typical values of the temperature difference, inter-particle film size, and density are calculated as functions of time. The calculated rates of compaction are too large, hence, at some later time, the effects of simultaneous grain growth must be added to the model.

1978 ◽  
Vol 21 (85) ◽  
pp. 639-650 ◽  
Author(s):  
S. C. Colbeck ◽  
N. Parssinen

Abstract The thermodynamics of phase equilibrium control the temperature distribution around the ice particles in wet snow. When the snow is stressed, pressure melting occurs at the inter-particle contacts and the snow densifies. Densification is described by a physical model which simulates the heat flow, meltwater flow, and particle geometry. The effects of ionic impurities, liquid saturation, and particle size are demonstrated. Typical values of the temperature difference, inter-particle film size, and density are calculated as functions of time. The calculated rates of compaction are too large, hence, at some later time, the effects of simultaneous grain growth must be added to the model.


1909 ◽  
Vol 176 (1909) ◽  
pp. 251-276
Author(s):  
B HOPKINSON ◽  
J C INGLIS ◽  
R E B CROMPTON ◽  
W W BEAUMONT ◽  
E J DAVIS ◽  
...  

2021 ◽  
Vol 143 (3) ◽  
Author(s):  
Christopher Zeh ◽  
Ole Willers ◽  
Thomas Hagemann ◽  
Hubert Schwarze ◽  
Jörg Seume

Abstract While turbocharging is a key technology for improving the performance and efficiency of internal combustion engines, the operating behavior of the turbocharger is highly dependent on the rotor temperature distribution as it directly modifies viscosity and clearances of the fluid film bearings. Since a direct experimental identification of the rotor temperature of an automotive turbocharger is not feasible at an acceptable expense, a combination of numerical analysis and experimental identification is applied to investigate its temperature characteristic and level. On the one hand, a numerical conjugate heat transfer (CHT) model of the automotive turbocharger investigated is developed using a commercial CFD-tool and a bidirectional, thermal coupling of the CFD-model with thermohydrodynamic lubrication simulation codes is implemented. On the other hand, experimental investigations of the numerically modeled turbocharger are conducted on a hot gas turbocharger test rig for selected operating points. Here, rotor speeds range from 64.000 to 168.000 rpm. The turbine inlet temperature is set to 600 °C and the lubricant is supplied at a pressure of 300 kPa with 90 °C to ensure practically relevant boundary conditions. Comparisons of measured and numerically predicted local temperatures of the turbocharger components indicate a good agreement between the analyses. The calorimetrically determined frictional power loss of the bearings as well as the floating ring speed are used as additional validation parameters. Evaluation of heat flow of diabatic simulations indicates a high sensitivity of local temperatures to rotor speed and load. A cooling effect of the fluid film bearings is present. Consequently, results confirm the necessity of the diabatic approach to the heat flow analysis of turbocharger rotors.


2006 ◽  
Vol 45 (10) ◽  
pp. 1450-1464 ◽  
Author(s):  
Sandra E. Yuter ◽  
David E. Kingsmill ◽  
Louisa B. Nance ◽  
Martin Löffler-Mang

Abstract Ground-based measurements of particle size and fall speed distributions using a Particle Size and Velocity (PARSIVEL) disdrometer are compared among samples obtained in mixed precipitation (rain and wet snow) and rain in the Oregon Cascade Mountains and in dry snow in the Rocky Mountains of Colorado. Coexisting rain and snow particles are distinguished using a classification method based on their size and fall speed properties. The bimodal distribution of the particles’ joint fall speed–size characteristics at air temperatures from 0.5° to 0°C suggests that wet-snow particles quickly make a transition to rain once melting has progressed sufficiently. As air temperatures increase to 1.5°C, the reduction in the number of very large aggregates with a diameter > 10 mm coincides with the appearance of rain particles larger than 6 mm. In this setting, very large raindrops appear to be the result of aggregrates melting with minimal breakup rather than formation by coalescence. In contrast to dry snow and rain, the fall speed for wet snow has a much weaker correlation between increasing size and increasing fall speed. Wet snow has a larger standard deviation of fall speed (120%–230% relative to dry snow) for a given particle size. The average fall speed for observed wet-snow particles with a diameter ≥ 2.4 mm is 2 m s−1 with a standard deviation of 0.8 m s−1. The large standard deviation is likely related to the coexistence of particles of similar physical size with different percentages of melting. These results suggest that different particle sizes are not required for aggregation since wet-snow particles of the same size can have different fall speeds. Given the large standard deviation of fall speeds in wet snow, the collision efficiency for wet snow is likely larger than that of dry snow. For particle sizes between 1 and 10 mm in diameter within mixed precipitation, rain constituted 1% of the particles by volume within the isothermal layer at 0°C and 4% of the particles by volume for the region just below the isothermal layer where air temperatures rise from 0° to 0.5°C. As air temperatures increased above 0.5°C, the relative proportions of rain versus snow particles shift dramatically and raindrops become dominant. The value of 0.5°C for the sharp transition in volume fraction from snow to rain is slightly lower than the range from 1.1° to 1.7°C often used in hydrological models.


1909 ◽  
Vol 176 (1909) ◽  
pp. 276-286
Author(s):  
R H FERNALD ◽  
H R RICARDO ◽  
R ROYDS ◽  
C H WINGFIELD ◽  
B HOPKINSON

Author(s):  
Christopher Zeh ◽  
Ole Willers ◽  
Thomas Hagemann ◽  
Hubert Schwarze ◽  
Joerg R. Seume

Abstract While turbocharging is a key technology for improving the performance and efficiency of internal combustion engines, the operating behavior of the turbocharger is highly dependent on the rotor temperature distribution as it directly modifies viscosity and clearances of the fluid film bearings. Since a direct experimental identification of the rotor temperature of an automotive turbocharger is not feasible at an acceptable expense, a combination of numerical analysis and experimental identification is applied to investigate its temperature characteristic and level. On the one hand, a numerical conjugate heat transfer (CHT) model of the automotive turbocharger investigated is developed using a commercial CFD-tool and a bidirectional, thermal coupling of the CFD-model with thermohydrodynamic lubrication simulation codes is implemented. On the other hand, experimental investigations of the numerically modelled turbocharger are conducted on a hot gas turbocharger test rig for selected operating points. Here, rotor speeds range from 64.000 to 168.000 rpm. The turbine inlet temperature is set to 600°C and the lubricant is supplied at a pressure of 300 kPa with 90°C to ensure practically relevant boundary conditions. Comparisons of measured and numerically predicted local temperatures of the turbocharger components indicate a good agreement between the analyses. The calorimetrically determined frictional power loss of the bearings as well as the floating ring speed are used as additional validation parameters. Evaluation of heat flow of diabatic simulations indicates a high sensitivity of local temperatures to rotor speed and load. A cooling effect of the fluid film bearings is present. Consequently, results confirm the necessity of the diabatic approach to the heat flow analysis of turbocharger rotors.


2016 ◽  
Vol 10 (5) ◽  
pp. 1915-1932 ◽  
Author(s):  
Maarten Krabbendam

Abstract. Basal ice motion is crucial to ice dynamics of ice sheets. The classic Weertman model for basal sliding over bedrock obstacles proposes that sliding velocity is controlled by pressure melting and/or ductile flow, whichever is the fastest; it further assumes that pressure melting is limited by heat flow through the obstacle and ductile flow is controlled by standard power-law creep. These last two assumptions, however, are not applicable if a substantial basal layer of temperate (T ∼ Tmelt) ice is present. In that case, frictional melting can produce excess basal meltwater and efficient water flow, leading to near-thermal equilibrium. High-temperature ice creep experiments have shown a sharp weakening of a factor 5–10 close to Tmelt, suggesting standard power-law creep does not operate due to a switch to melt-assisted creep with a possible component of grain boundary melting. Pressure melting is controlled by meltwater production, heat advection by flowing meltwater to the next obstacle and heat conduction through ice/rock over half the obstacle height. No heat flow through the obstacle is required. Ice streaming over a rough, hard bed, as possibly in the Northeast Greenland Ice Stream, may be explained by enhanced basal motion in a thick temperate ice layer.


Author(s):  
Yasuo Harigaya ◽  
Michiyoshi Suzuki ◽  
Masaaki Takiguchi

Abstract This paper describes that an analysis of oil film thickness on a piston ring of diesel engine. The oil film thickness has been performed by using Reynolds equation and unsteady, two-dimensional (2-D) energy equation with a heat generated from viscous dissipation. The temperature distribution in the oil film is calculated by using the energy equation and the mean oil film temperature is computed. Then the viscosity of oil film is estimated by using the mean oil film temperature. The effect of oil film temperature on the oil film thickness of a piston ring was examined. This model has been verified with published experimental results. Moreover, the heat flow at ring and liner surfaces was examined. As a result, the oil film thickness could be calculated by using the viscosity estimated from the mean oil film temperature and the calculated value is agreement with the measured values.


Sign in / Sign up

Export Citation Format

Share Document