scholarly journals Adding value in barley malt rootlets as a source of 5’-phosphodiesterase

Author(s):  
Sunčica Beluhan ◽  
Ivana Karmelić ◽  
Mirela Ivančić Šantek

A thermostable 5’-phosphodiesterase (5’-PDE, EC 3.1.4.1) was extracted from barley (Hordeum distichum var. Rex) malt rootlets. The purification procedure comprised acetone precipitation, S-Sepharose cation-exchange and DEAE-Sepharose anion-exchange chromatography. The enzyme was purified 101-fold with a recovery of 22% and a specific activity of 81.9 U mg-1 protein, Optimum enzyme activity was obtained at 70 °C, and pH 8.9. The SDS-PAGE profiling of the purified protein exhibited molecular weight of 116 kDa and revealed three sub-unit fractions of 26, 43, and 56 kDa making up its active configuration. The kinetic constants Km and Vmax were determined as 0.25 mM and 0.816 mmol min-1, respectively. Thermodynamic studies showed that the thermal inactivation of purified barley malt rootlets 5’-PDE followed the first-order kinetics, indicating inactivation energy (Ed) of 134 kJ mol-1. The half-life (t1/2) at 70 °C was estimated as 169 min. Thermodynamic parameters ΔH*, ΔS* and ΔG* were determined as a function of temperature and were 131.15 kJ mol-1, 37.01 kJ mol-1 K-1 and 118.4 kJ mol-1, respectively. The purified enzyme has long half-life with 11 days at 0 °C, 37 hours at 4 °C and 11 hours at room temperature. These results provide useful information about the factors that affects the activity of barley malt rootlets 5’-PDE and suggests a good indication for application of this enzyme in pharmaceutical and food industry.

2017 ◽  
Vol 37 (1) ◽  
pp. 31
Author(s):  
Fitria Fitria ◽  
Nanik Rahmani ◽  
Sri Pujiyanto ◽  
Budi Raharjo ◽  
Yopi Yopi

Enzyme xylanase (EC 3.2.1.8) is widely used in various industrial  fields for the hydrolysis of xylan (hemicellulose) into xylooligosaccharide and xylose. The aims of this study were to  conduct partial purification and characterization of xylanase from marine Bacillus safencis strain LBF P20 and to obtain the  xylooligosaccharide types from xylan hydrolysis by this enzyme.  Based on this research, the optimum time for enzyme production  occurred at 96 hours with the enzyme activity of 6.275 U/mL and  enzyme specific activity of 5.093 U/mg. The specific activities were  obtained from precipitation by amicon® ultra-15 centrifugal filter devices, gel filtration chromatography and anion exchange chromatography that were increased by 15.07, 34.7, and 96.0  U/mg. The results showed that the highest activity at pH 7, temperature of 60 °C, and stable at 4 °C. Type of  xylooligosaccharide produced by this study were xylohexoses, xylotriose, and xylobiose. SDS-PAGE analysis and zimogram  showed that the molecular weight of xylanase protein were about  25 kDa. ABSTRAKEnzim xilanase (EC 3.2.1.8) digunakan dalam hidrolisis xilan  (hemiselulosa) menjadi xilooligosakarida dan xilosa. Penelitian  ini bertujuan untuk melakukan purifikasi parsial dan karakterisasi xilanase dari bakteri laut Bacillus safencis strain LBF P20 serta uji  hidrolisis untuk mengetahui jenis xilooligosakarida yang  dihasilkan oleh enzim tersebut. Berdasarkan hasil penelitian, waktu optimum untuk produksi enzim terjadi pada jam ke 96  dengan aktivitas enzim sebesar 6,275 U/mL dan aktivitas spesifik enzim sebesar 5,093 (U/mg). Aktivitas spesifik enzim hasil  pemekatan dengan amicon® ultra-15 centrifugal filter devices,  kromatografi filtrasi gel dan kromatografi penukar anion  mengalami peningkatan berturut-turut sebesar 15,1; 34,7 dan96,0 U/mg. Hasil karakterisasi menunjukkan aktivitas  tertinggi pada pH 7, suhu 60 °C dan stabil pada suhu 4 °C. Analisis SDS-PAGE dan zimogram menunjukkan berat molekul protein xilanase berkisar 25 kDa. Jenis gula reduksi yang  dihasilkan yaitu xiloheksosa, xilotriosa, dan xilobiosa.


2020 ◽  
Vol 17 (3) ◽  
pp. 561-567
Author(s):  
Pham Thi My Binh ◽  
Le Hai Yen ◽  
Tran Quoc Tuan ◽  
Nguyen Thi Hong Thuong

Eugenol oxidase (EUGO), a member of the vanillyl alcohol oxidase family, catalyzes the oxidative reaction of vanillyl alcohol to vanillin. This compound is responsible for the vanilla aroma and is widely used as a flavoring agent in food, cosmetics, and pharmaceuticals. Previously, EUGO was cloned and expressed in E. coli TOP10, and purified by anion-exchange chromatography with Q-Sepharose resin but the purification factor was low. To improve the efficiency of the EUGO purification, in this study, we cloned eugo gene into pET-28a vector and expressed it in E. coli Tunetta. The SDS-PAGE analysis of protein extracts obtained from E. coli expressing EUGO under different induction conditions showed that EUGO was expressed mostly in the soluble fraction at 6 hours after induction with 0.1 mM IPTG at 25oC. EUGO was purified by immobilized−metal affinity chromatography with Ni2+-NTA agarose and the in vitro enzymatic activity was characterized. The specific activity of purified EUGO was nearly 4-fold higher than that of the crude enzyme sample. In particular, the enzyme preparation produced by the purification method based on Ni-NTA affinity in this study was 2,5-fold more pure than that produced by Q-sepharose purification method described previously.


Author(s):  
Ismat Bibi ◽  
Haq Nawaz Bhatti

This study deals with purification and characterization of lignin peroxidase (LiP) isolated from Agaricus bitorqus A66 during decolorization of NOVASOL Direct Black dye. A laboratory scale experiment was conducted for maximum LiP production under optimal conditions. Purification & fractionation of LiP was performed on DEAE-Sepharose ion exchange chromatography followed by Sephadex G-50 gel filtration. The purified LiP has a specific activity of 519 U/mg with 6.73% activity recover. The optimum pH and temperature of purified LiP for the oxidation of veratryl alcohol were 6.8 and 45 °C, respectively. Michaelis-Menten kinetic constants (Vmax and Km) were determined using different concentrations of veratryl alcohol (1-35 mM). The Km and Vmax were 16.67 mM and 179.2 U/mL respectively, for veratryl alcohol oxidation as determined from the Lineweaver-Burk plot. Thermal inactivation studies were carried out at different temperatures to check the thermal stability of the enzyme. Enthalpy of activation decreased where Free energy of activation for thermal denaturation increased at higher temperatures. A possible explanation for the thermal inactivation of LiP at higher temperatures is also discussed.


2021 ◽  
Vol 9 (2) ◽  
pp. 24-30

Streptokinase is a fibrinolytic enzyme and a product of β-hemolytic Streptococci strains. This enzyme is used as a medication to break down clots in some cases of heart disease. Streptococcus equisimilis, a species of group C Streptococci, is widely used for the production of streptokinase by fermentation technology. In this study, the sugarcane bagasse fermentation medium was optimized for metal ions (KH2PO4, MgSO4.7H2O, CaCO3 and NaHCO3) at various levels to attain the maximal production of streptokinase. Sugarcane bagasse was used due to its profuse availability and as an ideal substrate for microbial processes for the manufacturing of value-added products. The results showed that maximal streptokinase production was found at 0.04% KH2PO4, 0.04% MgSO4.7H2O, 0.15% NaHCO3 and 0.04% CaCO3. Finally, the optimized medium resulted in 84.75 U/mg specific activity and 74.5% recovery. The purification process was carried out simultaneously using ammonium sulfate precipitation, ion-exchange chromatography, and gel filtration. Finally, a purified sample of streptokinase was run on SDS-PAGE and resolute 47 kDa molecular weight. The use of β-hemolytic Streptococci to obtain streptokinase is not free from health risks and is related to anaphylaxis. This study provides a way forward for the cost-effective ways to obtain streptokinase for the treatment of thrombosis.


2017 ◽  
Vol 18 (2) ◽  
pp. 1-10 ◽  
Author(s):  
Dzun Noraini Jimat ◽  
Intan Baizura Firda Mohamed ◽  
Azlin Suhaida Azmi ◽  
Parveen Jamal

A newly bacterial producing L-asparaginase was successful isolated from Sungai Klah Hot Spring, Perak, Malaysia and identified as Bacillus sp. It was the best L-asparaginase producer as compared to other isolates. Production of L-asparaginase from the microbial strain was carried out under liquid fermentation. The crude enzyme was then centrifuged and precipitated with ammonium sulfate before further purified with chromatographic method. The ion exchange chromatography HiTrap DEAE-Sepharose Fast Flow column followed by separation on Superose 12 gel filtration were used to obtain pure enzyme. The purified enzyme showed 10.11 U/mg of specific activity, 50.07% yield with 2.21 fold purification. The purified enzyme was found to be dimer in form, with a molecular weight of 65 kDa as estimated by SDS-PAGE. The maximum activity of the purified L-asparaginase was observed at pH 9 and temperature of 60°C.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Sunil Kumar Singh ◽  
Meera Yadav ◽  
Sudha Yadava ◽  
Kapil Deo Singh Yadav

Mn peroxidase has been purified to homogeneity from the culture filtrate of a new fungal strainFomes durissimusMTCC-1173 using concentration by ultrafiltration and anion exchange chromatography on diethylaminoethyl (DEAE) cellulose. The molecular mass of the purified enzyme has been found to be 42.0 kDa using SDS-PAGE analysis. The values using MnSO4and H2O2as the variable substrates in 50 mM lactic acid-sodium lactate buffer pH 4.5 at were 59 μM and 32 μM, respectively. The catalytic rate constants using MnSO4and H2O2were 22.4 s−1and 14.0 s−1, respectively, giving the values of 0.38 μM−1s−1and 0.44 μM−1s−1, respectively. The pH and temperature optima of the Mn peroxidase were 4 and , respectively. The purified MnP depolymerises humic acid in presence of H2O2. The purified Mn peroxidase exhibits haloperoxidase activity at low pH.


Author(s):  
Nguyen Thi My Trinh ◽  
Tran Linh Thuoc ◽  
Dang Thi Phuong Thao

Background: The recombinant human granulocyte colony stimulating factor con-jugated with polyethylene glycol (PEGylated GCSF) has currently been used as an efficient drug for the treatment of neutropenia caused by chemotherapy due to its long circulating half-life. Previous studies showed that Granulocyte Colony Stimula-ting Factor (GCSF) could be expressed as non-classical Inclusion Bodies (ncIBs), which contained likely correctly folded GCSF inside at low temperature. Therefore, in this study, a simple process was developed to produce PEGylated GCSF from ncIBs. Methods: BL21 (DE3)/pET-GCSF cells were cultured in the LiFlus GX 1.5 L bioreactor and the expression of GCSF was induced by adding 0.5 mM IPTG. After 24 hr of fermentation, cells were collected, resuspended, and disrupted. The insoluble fraction was obtained from cell lysates and dissolved in 0.1% N-lauroylsarcosine solution. The presence and structure of dissolved GCSF were verified using SDS-PAGE, Native-PAGE, and RP-HPLC analyses. The dissolved GCSF was directly used for the con-jugation with 5 kDa PEG. The PEGylated GCSF was purified using two purification steps, including anion exchange chromatography and gel filtration chromatography. Results: PEGylated GCSF was obtained with high purity (~97%) and was finally demonstrated as a form containing one GCSF molecule and one 5 kDa PEG molecule (monoPEG-GCSF). Conclusion: These results clearly indicate that the process developed in this study might be a potential and practical approach to produce PEGylated GCSF from ncIBs expressed in Escherichia coli (E. coli).


2005 ◽  
Vol 37 (6) ◽  
pp. 363-370 ◽  
Author(s):  
Ye-Yun Li ◽  
Chang-Jun Jiang ◽  
Xiao-Chun Wan ◽  
Zheng-Zhu Zhang ◽  
Da-Xiang Li

Abstractβ-Glucosidases are important in the formation of floral tea aroma and the development of resistance to pathogens and herbivores in tea plants. A novel β-glucosidase was purified 117-fold to homogeneity, with a yield of 1.26%, from tea leaves by chilled acetone and ammonium sulfate precipitation, ion exchange chromatography (CM-Sephadex C-50) and fast protein liquid chromatography (FPLC; Superdex 75, Resource S). The enzyme was a monomeric protein with specific activity of 2.57 U/mg. The molecular mass of the enzyme was estimated to be about 41 kDa and 34 kDa by SDS-PAGE and FPLC gel filtration on Superdex 200, respectively. The enzyme showed optimum activity at 50 °C and was stable at temperatures lower than 40 °C. It was active between pH 4.0 and pH 7.0, with an optimum activity at pH 5.5, and was fairly stable from pH 4.5 to pH 8.0. The enzyme showed maximum activity towards pNPG, low activity towards pNP-Galacto, and no activity towards pNP-Xylo.


1989 ◽  
Vol 35 (8) ◽  
pp. 1774-1776 ◽  
Author(s):  
D A Smith ◽  
G C Moses ◽  
A R Henderson

Abstract We examined the stability of human lactate dehydrogenase (EC 1.1.1.27) isoenzyme 5--purified to a specific activity of about 400 kU/g--when lyophilized in a buffered, stabilized matrix of bovine albumin. This isoenzyme was prepared with a final activity of about 500 U/L and stored at -20, 4, 20, 37, and 56 degrees C for as long as six months. This isoenzyme decayed with approximate first-order kinetics, with an estimated half-life at -20 degrees C of about 475 years. Stability of reconstituted samples stored at 20 or 4 degrees C was poor, suggesting that the reconstituted material should be used without delay; material stored at -20 degrees C showed excellent stability for 15 days. We propose that such preparations might be further investigated as standards for use in electrophoresis of lactate dehydrogenase isoenzymes.


1988 ◽  
Vol 60 (03) ◽  
pp. 471-475 ◽  
Author(s):  
H Erdjument ◽  
D A Lane ◽  
H Ireland ◽  
V Di Marzo ◽  
M Panico ◽  
...  

SummaryAntithrombin Milano is an unusual antithrombin variant, exhibiting an abnormal, fast moving component on crossed immunoelectrophoresis (in the absence of heparin). Antithrombin isolated from the propositus could be resolved into two peaks on anion-exchange chromatography; anti thrombin Milano peak 1 of Mr ∼60,000 which could inhibit thrombin, and antithrombin Milano peak 2 of Mr ∼120,000 which was inactive. The latter component also reacted with antisera to both antithrombin and albumin on immunoblotting. Under reducing conditions, the ∼120,000 Mr component migrated on SDS-PAGE as two distinct bands with Mr ∼60,000, one of which reacted with antiserum to antithrombin and the other (of slower mobility) of which reacted with antiserum to albumin only. These and other results established the ∼120,000 Mr component to be an inactive, disulphide-linked variant antithrombin and albumin complex. The variant antithrombin was isolated, following reduction and S-carboxy-methylation, by reverse-phase HPLC and then it was fragmented with CNBr. A major CNBr pool containing the sequence Gly339-Met423 was treated with trypsin, followed by V8 protease. The resulting peptides were analysed by fast atom bombardment mass spectrometry (Fab-MS) mapping. A peptide of molecular mass 1086, corresponding to the normal sequence Ala382-Arg393, was almost absent from the mass spectrum, but an additional peptide of mass number 1772 was present. These results are almost identical to those found in another variant antithrombin, North-wick Park (Erdjument et al., J Biol Chem, 262: 13381, 1987; Erdjument et al., J Biol Chem, 263: 5589-5593, 1988), indicating the same single amino acid substitution of Arg393 to Cys.


Sign in / Sign up

Export Citation Format

Share Document