scholarly journals Hydrological Analysis In Selecting Flood Discharge Method In Watershed Of Kelara River

2021 ◽  
Vol 8 (2) ◽  
pp. 141
Author(s):  
Muhammad Rifaldi Mustamin ◽  
Farouk Maricar ◽  
Riswal Karamma

For Engineers involved in planning and construction of water resources building, hydrology becomes very important data. In terms of planning stage in water resources especially waterworks, it is known that design flood discharge closed to field realistic conditions is often needed in order that a planned construction is able to control flood discharge. Several previous researches in choosing flood discharge selection method have diverse depending on observed watershed. One method in determining selected flood discharge by verification using Creager diagram, by comparing discharge calculation results of several Synthetic Unit Hydrograph (SUH) with infrastructure flood discharge (AWLR result) in observation point. This research aims to obtain  the most suitable synthetic unit hydrograph and close to analysis result of measured discharge frequency, and Creager diagram in Kelara watershed (DAS). Based on the calculation of design flood discharge according to rainfall data using synthetic unit hydrograph of Nakayasu, ITB I, ITB II, and SCS (HEC-HMS) as well as the calculation of design flood discharge according to collected data, it is concluded that the synthetic unit hydrograph method closest to design flood discharge with measured discharge rate and Q1000 rate of Creager diagram is SCS. Flood discharge rate obtained according to HSS SCS method using HEC-HMS  4.8 application in period of 2 years  is 658,40 m3/s, 25 years is 682,70 m3/s, 50 years is 787,00 m3/s, 100 years is 885,70 m3/det, and 1000 years is 1202,60 m3/s

2019 ◽  
Vol 8 (4) ◽  
pp. 5509-5514

The lacks of hydrograph data in the field has become the drawback of the hydraulic structure planning. However, such a conditional deficiency in particular, has urgently placed the Synthetic Unit Hydrograph (SUH) models to be very great utility. The Synthetic Unit Hydrograph (SUH) is a popular model that is used in many water resources designs especially in design flood analysis in ungagged watershed. One of the SUH that is usually used in Indonesia is Nakayasu SUH. This model is depended on the α parameter that is influencing the unit hydrograph ordinate and time base. This research intends to build a model of α parameter that is as the characteristic factor of part of watersheds in Indonesia. The methodology consists of observed unit hydrograph analysis for obtaining the α parameter in each watershed, to collect the characteristic data in each watershed, and then to formulate the α parameter model that is as the function of watershed characteristic. The result is formulation model of α that can be used to analyze the design flood in the watershed in Indonesia


2020 ◽  
Vol 22 (2) ◽  
pp. 146-151
Author(s):  
Nadya Kintantrie Maulana ◽  
Yeri Sutopo

Abstract: Various kinds of buildings in civil engineering require careful planning. For example, in the planning of a water building needed a method to calculate the design flood discharge before starting to plan the dimensions of the building to meet the effectiveness of the water structure. Design flood discharge can be determined using several hydrograph methods that have been used in water building planning in Indonesia. One of the popular hydrograph method used is the Nakayasu Synthetic Unit Hydrograph method. In this case, the design flood discharge is located in the Garang watershed, precisely in Semarang City, province of Central Java, using rainfall data for the past 16 years. Hydrological analysis is carried out first before determining the design flood discharge with a return period of 2, 5, 10, 25, and 50 years. The results of the design flood discharge using Nakayasu method respectively were 305,522 m3/s, 390,742 m3/s, 447,783 m3/s, 520,560 m3/s, and 574,912 m3/s.


2020 ◽  
Vol 4 (2) ◽  
Author(s):  
Ridwan Abadi Akbar ◽  
Adwitya Bhaskara

<p align="center"><strong>Abstract.</strong></p><p>Floods always come suddenly and unexpectedly, and lots of people living in the flood-prone area can be the victims. As happened on February 2, 2020, a number of rice fields, roads, and houses belonging to the residents in the Parangjoho watershed, Eromoko District, Wonogiri, with 9.8-km river length and 32.59-km<sup>2</sup> area, was flooded due to heavy rain for some time which flushed the Eromoko area, therefore, the river flow could not accommodate the volume of water that entered and overflowed. This was what motivated researchers to calculate the design flood discharge to be able to carry out the flood control.</p><p>The methods of calculating the design flood discharge in the Parangjoho watershed used the Nakayasu Synthetic Unit Hydrograph (SUH) Method and the Soil Conservation Service (SCS) Method, using the rainfall data from the Bengawan Solo Central River Region at Parangjoho Station. The rainfall data used were from 2000 to 2019.</p>


2020 ◽  
Vol 3 (2) ◽  
pp. 115-128
Author(s):  
Asta Asta ◽  
Nurjaya Nurjaya

The Kayan Watershed in Bulungan Regency is the largest river in North Kalimantan which has the potential for flooding in several irrigated points. Kayan River is a flood-prone area and prioritized to be handled immediately because there is already a smooth life for the community. Potentially need to know the great potential of flooding in the Kayan River. To find out the relationship between flood discharge and flood time, the Synthetic Unit Hydrograph calculation method is used. The aim is to determine the shape and results of peak discharge in Synthetic Unit Hydrograph Y (SUH). This study uses a debit calculation in the Kayan watershed using Snyder HSS a nd Nakayasu HSS. From the calculation results obtained Snyder SUH peak discharge of 118.0 m3/ sec at 73.85 hours, and Nakayasu SUH has a peak discharge of 109.35 m3 / sec at 54.09 hours.


2020 ◽  
Vol 4 (2) ◽  
pp. 126-137
Author(s):  
Aswar Amiruddin ◽  
Saparuddin Saparuddin ◽  
Triyanti Anasiru

Floods often occur in several regions in Indonesia. The problem is the flooding with its uncertain characteristics is one of the environmental problems that has not been handled optimally. The method of converting rain data into discharge data for flood analysis has been widely presented in previous studies. The methods used to analyze flood discharge also vary, starting from rational, empirical, statistical models to the unit hydrograph model. This research aims to determine the flood discharge design for return periods 2, 5, 10, 20, 25, 50, and 100 years in Tojo watershed, Tojo Una-una Regency using the synthetic unit hydrograph method of ITB-1. Research methods are data collection and data analysis. Data collection was carried out at several agencies and collecting from online sources. Results of this research design flood discharge that was analyzed by synthetic unit hydrograph of ITB-1 method. The maximum design flood discharge at Tojo watershed are 82.375m3/s for a 2-year, 98.21 m3/s for a 5-year, 104.77 m3/s for a 10-year, 111.83 m3/s for a 20-year, 113.3 m3/s for a 25-year, 118.87 m3/s for a 50-year, 123.86 m3/s for a 100-year return period


2021 ◽  
Vol 331 ◽  
pp. 07015
Author(s):  
Dian Pratiwi ◽  
Arniza Fitri ◽  
Arlina Phelia ◽  
Nabila Annisa Amara Adma ◽  
Kastamto

In the urban area, flooding becomes the most common disaster that has not been resolved until today. The utilization of river border area into housing and lack of absorption area becomes the trigger factor of urban flooding, as what is happening around Way Halim River on Seroja street. In this area, floods often happen during the rainy season, with the latest events recorded on January 21st, 2021. Analysis of flood intensities and discharges can be parameters for the decision-making of flood mitigation strategies. This study aims to analyze the flood discharges along Way Halim River, Seroja street by comparing the flood discharges resulting from three analysis methods of Synthetic Unit Hydrograph (SUH) including Gama I SUH, Nakayasu SUH, and Snyder SUH. Finally, suitable flood mitigation strategies were also proposed in this study based on the flood discharges and rain intensities. The results showed that Nakayasu SUH had the highest peak flood discharge than Snyder SUH and Gama I SUH. Based on the results of the investigation of land suitability; and analysis of rainfall intensities and flood discharges, the proposed flood mitigation in Seroja street is by installing biopore infiltration holes along Seroja street for storing water and reducing the risk of flooding in the area.


Author(s):  
S. Samatan

Design flood discharge is one of the important parameters in the management of water resources, especially water resources utilization structures and water damage control structures. This parameter serves to determine the dimensions and capacity of the planned water structures. As an important reference, this design flood discharge must be carefully determined so that the planned building is effective and financially functional and economically efficient. This study aims to determine the design flood discharge using rainfall data which will be recommended as a reference for the design of a micro-hydro power plant building in Kaliwadas River, Pekalongan Regency, Central Java Province. The results of the analysis based on rainfall data are compared with estimates using discharge data to determine deviations resulting from the use of rainfall data. Frequency analysis is applied to both types of rainfall and maximum daily discharge data. Chi-Square and Kolmogorov-Smirnov tests were performed to test four distribution methods: Normal, Normal Log, Pearson Log III and Gumbel. Transformation of design rainfall into design discharge is done using the Snyder Synthetic Unit Hydrograph Method, by first optimizing the hydrograph parameter. The analysis shows that the design flood discharge using rainfall data is relatively lower than using discharge data with an average deviation of more than 15%. This deviation is expected to occur when the transformation of rainfall into discharge is influenced by various very complex parameters, especially changes in land cover and rainfall distribution that have not been fully accommodated. However, for watersheds with very limited discharge data, the use of rain data can be an option for establishing a design flood discharge.


Author(s):  
Dandy Achmad Yani ◽  
Ery Suhartanto

ABSTRAK Kurangnya ketersediaan data hidrograf merupakan kendala bagi perencanaan bangunan air. Kendala ini menjadikan model-model HSS akan memberikan manfaat yang cukup besar. Idealnya setiap DAS mempunyai Hidrograf Satuan dengan ciri tertentu. Studi ini bertujuan untuk mengamati karakteristik hidrograf pengamatan di tiap DAS dan semua DAS di Propinsi Sulawesi Selatan. Tujuan utama studi ini adalah membuat rancangan Model Hidrograf Satuan Sintetis antara lain persamaan debit puncak banjir (Qp) dan waktu mencapai puncak banjir (Tp) yang antara lain merupakan fungsi dari luas DAS (A), panjang sungai terpanjang (L), dan faktor bentuk DAS. Faktor bentuk DAS merupakan rasio dari keliling (K) dan luas area (A) DAS. Analisis model menggunakan regresi dengan berbagai alternatif. Hasilnya permodelan hidrograf satuan sintetis (HSS) dengan variabel luas DAS (A), panjang sungai terpanjang (L), dan faktor bentuk DAS (FD) dan tentunya sesuai dengan kriteria dari koefisien determinasi, diharapkan mempunyai sensitivitas yang cukup tinggi. Faktor bentuk DAS (FD) diharapkan mempunyai hubungan linear dengan parameter hidrograf satuan sintetis.Kata kunci: debit puncak banjir, waktu mencapai puncak, luas DAS, panjang sungai terpanjang, faktor bentuk DAS   ABSTRACT The lack of hydrograph data availability is an obstacle for water building planning. This constraint makes HSS models will provide considerable benefits. Ideally each watershed has a Hydrograph Unit with certain characteristics. This study aims to observe the hydrograph characteristics of observations in each watershed and all watersheds in South Sulawesi Province. The main objective of this study is to design a Synthetic Unit Hydrograph Model, including the peak flood discharge equation (Qp) and the time to reach the flood peak (Tp), which among others is a function of the watershed area (A), longest river length (L), and form factor Watershed. The watershed form factor is the ratio of perimeter (K) and area (A) of the watershed. Model analysis uses regression with various alternatives. The result is synthetic unit hydrograph modeling (HSS) with a broad variable watershed (A), longest river length (L), and DAS (FD) form factor and of course according to the criteria of the coefficient of determination, it is expected to have a high enough sensitivity. The DAS (FD) form factor is expected to have a linear relationship with the parameters of synthetic unit hydrographs. 


2021 ◽  
Vol 004 (02) ◽  
pp. 127-140
Author(s):  
Putri Mayasari ◽  
Freddy Ilfan ◽  
Yasdi Yasdi ◽  
Rimba Rimba

Jambi River is one of the rivers located in the Muaro Jambi Temple Complex Area, Muaro Jambi Regency, Jambi Province. Muaro Jambi Temple is one of the tourist attractions in Jambi Province. This study aims to find the capacity of Jambi River tested by planned flood discharge utilizing (synthetic unit hydrograph) HSS Nakayasu method for a return period of two, five, ten, twenty-five, fifty and hundred years. HEC-RAS software used to analyse the water level in the Jambi River towards the flood potential that causes the submerging of the Kedaton Temple building. This research used the log Pearson type III method to calculate the planned rain return period and used the Nakayasu synthetic unit method to calculate the planned flood discharge. The analysis showed that the Jambi River could not load the flood discharge in the five, ten, twenty-five, fifty, and one hundred years return period at several measurement points: river sta-1, river sta-2 and river sta-5. The floodwater level did not cause the Kedaton Temple building to be flooded from the simulation result


2019 ◽  
Vol 21 (2) ◽  
pp. 70-75
Author(s):  
Cilcia Kusumastuti ◽  
Prasetio Sudjarwo ◽  
Marvin Christhie ◽  
Timotius Krisna

Design flood is one of the important factors for flood risk assessment and water infrastructures planning and development in a certain location. There are several methods to estimate it, one method which has been commonly and widely use is using flood frequency analysis. This research aims to develop Intensity-Duration-Frequency (IDF) curves in Upper Werba Sub-Watershed, West Papua Province, Indonesia, to estimate design rainfall intensity. The design rainfall intensity is used to estimate peak of flood discharge using Rational Formula in the sub-watershed. Other methods, i.e. Soil Conservation Service and Nakayasu Synthetic Unit Hydrograph are also presented in this paper to provide comparison of the estimated peak of flood discharge. The result shows that the Rational method provide the closest magnitude of estimated flood discharge in Upper Werba Sub-Watershed to the observed streamflow. Therefore, it is suggested that the Rational method can be used for water infrastructure planning and development in the sub-watershed.


Sign in / Sign up

Export Citation Format

Share Document