scholarly journals Handling Water Leaking on The Turbine Pit ULPLTA Bakaru due to Damage of the Guide Vane Part using Automatic Method with Motorized Valve

2021 ◽  
Vol 8 (2) ◽  
pp. 120
Author(s):  
Mochamad Marte Ardhianto ◽  
Rudi Sumarwanto

The Bakaru PLTA is the largest hydroelectric power plant in South Sulawesi with a capacity of 126 MW. To generate that much power, a lot of water is required, therefore, the Bakaru hydropower dam is designed to be able to accommodate a lot of water. In operation, the Bakaru hydropower plant consists of 2 units. However, not all units operate normally, such as unit 2. In unit 2, there is a leak that occurs in the Turbine Pit. This leak is caused by abrasion of the u-packing guide vane. With a leak in the turbine pit, more approaches are needed to dispose of the water in the turbine pit to the pit drainage. Which later developed into an infusion system that utilizes gravity to discharge water from the turbine pit in basement 2 to the drainage pit in basement 3. However, in its development, it turns out that the volume of water discharged cannot be controlled so that, it can cause a condition where one day the infusion hose does not flow and causes an increase in the water level in the turbine pit. This rise in the level of the turbine pit is dangerous for the unit. This is because water can enter the breathing hole of the bearing turbine tank and contaminate the oil so the bearing temperature is high and causes a trip or in the worst case, causing equipment damage. However, in reality, using an infusion system using human labor is still often constrained in terms of time efficiency, consistency and cost. Because every time this activity is carried out, the workers who do it are not always the same person and scheduled. Therefore the efficiency is still low. The purpose of this study was to determine the optimal method of handling the increase in water level in the turbine pit so that unit trips do not occur caused by the increase in the water level in the turbine pit. Finally, it is interesting to discuss and find a solution by relocating the handling of leaks by "using an automatic method with a motorized valve by installing a Motorized Valve on the Turbine Pit, so there are financial and non-financial benefits to be obtained. From the results of using the automatic method with a motorized valve, the results obtained are faster cycle times for handling leaks in the turbine pit so there is no stop unit due to leakage disturbances in the turbine pit.

2002 ◽  
Vol 122 (6) ◽  
pp. 989-994
Author(s):  
Shinichiro Endo ◽  
Masami Konishi ◽  
Hirosuke Imabayashi ◽  
Hayami Sugiyama

2011 ◽  
Vol 3 (2) ◽  
pp. 171-186 ◽  
Author(s):  
Weddy Bernadi Sudirman ◽  
Sarwono Hardjomuljadi

The development of hydroelectric power plant is one of the efforts in utilising water resources for people’s welfare by generating the energy for electricity purpose. Nowadays, the installed capacity of hydro electric power plants is 3,529 MW from the total installed capacity 24,846 MW from various power plants owned by PT PLN (Persero) and the hydropower potential 75,000 MW all over Indonesia. Hydroelectric power plant has complex structures and involves large amounts of capital with a long-running construction period. This situation imposes uncertainty factors with considerably high risks. The construction phase is identified as a critical phase in hydropower projects where many unforeseen factors occur. Failure to manage project risks leads to significant problems for the client such as completion time delays and cost overruns. In order to prevent time delays and cost overruns in hydropower construction in PT PLN (Persero), the study on project risk management in the construction stage of hydropower plant projects had been conducted. The purpose of this study was to identify and measure the importance of construction risks and to determine the level of agreement or disagreement between the client, consultants and contractors on the ranking of construction risk in hydropower projects. The author selected the respondents from the clients, consultants and contractors’ personnel who had work experience in hydropower construction projects in PT PLN (Persero). JEL Classification: L74—Construction


2019 ◽  
Vol 805 ◽  
pp. 185-190
Author(s):  
Meilinda Nurbanasari ◽  
Tri Sigit Purwanto ◽  
Tarsisius Kristyadi ◽  
Deden Syamsurizal

Bearing cooler coils connector of 175 MW hydropower plant experienced premature leaks after one year operation and caused an unscheduled shutdown. To avoid the same failure in the future, the leaking bearing cooler coils connector was investigated. Nondestructive tests, such as chemical composition analysis, hardness test, metallographic test, characterization of the filler brazing by scanning electron microscopy – energy dispersive X-ray spectroscopy were conducted. The results confirmed that the bearing cooler coils connector consisted of two types of material namely the flange material which was made of stainless steel 304 and the pipe material which was a Cu/Ni 90/10 and were joined together using brazing process. It was a clearly evidence that leaks occurred in the brazing area and the leakage was due to improper brazing process. It was shown by the excessive gap and a lot of porosity.


2018 ◽  
Vol 1 (2) ◽  
pp. 293-303
Author(s):  
Diego Fernando Rodríguez-Galán ◽  
Andrés Escobar-Díaz

In this study a presentation is made of the Small Hydroelectric Power Plant (PCH) located in Usaquén (Bogota), the work is based on an engineering project carried out by the Aqueduct and Sewer Company of Bogotá (EAAB). It is addressed first of all the environmental problems considered in this project and the business context that propitiates it, taking into account the technical background of the operation of the aqueduct system of the city. In second instance, the technical generalities and the scopes that were estimated in the formulation of the project are exposed to finally contrast them with the results obtained after five years of operation of the project.


Author(s):  
Andrei Raphael Dita ◽  
Eric Cruz ◽  
Jose Carlo Eric Santos

A marina for small crafts is being planned to be built within Caliraya Lake situated at an elevation of 290m above Mean Sea Level (maMSL). Unlike sea-connected water bodies, the water level of Caliraya Lake is largely influenced not by tidal fluctuations, but by the operational water level requirements of the hydroelectric power plant that it caters to. Due to the large difference in the Normal High Water Level (NHWL) and Minimum Operating Level (MOL) of the lake of 2.5m, a floating pontoon marina with guide piles was contemplated to be used. The marina analysis and design approaches implemented in this study considered waves generated by prevailing winds and ship-generated wakes to assess the wave climate and tranquility within the marina. Since the project area is also frequently tracked by typhoons, wind- and pressure-driven storm surges were also used for the vertical siting of the guide piles. Lastly, based on the geographic appearances of the lake shoreline and with the small size of the lake, the fetch limitations resulted to very small wind-generated waves and wind setup considered as wind-driven storm surge components. In comparison to open seas where wind-driven storm surge accounts for approximately 95percent of the total storm surge, the wind-driven storm surge components for the potentially critical historical typhoons which traversed within 200-km radius of the project area only generated 10-30percent of the total storm surge considered for the vertical siting.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/m-XEEw6r99g


2021 ◽  
Vol 19 (1) ◽  
pp. 80
Author(s):  
Akbar Tanjung ◽  
Arman Jaya ◽  
Suryanto Suryanto ◽  
Apollo Apollo

One form of water energy utilization is done by building a Hydroelectric Power Plant (PLTA) in Indonesia, the Bakaru PLTA is one of the projects within PT. PLN (Persero). This project is a Hydro Power Plant Master project with a SULSELRABAR transmission located 246 km from the city of Makassar. The operation of the Bakaru hydropower system is certainly expected to work optimally, reliably and efficiently. Therefore, evaluation or data on the performance of the generator itself is needed. This study was conducted to determine the condition of the Bakaru hydropower plant based on the equivalent availability factor (EAF) and Net Capacity Factor (NCF) and Cost of Production (BPP). The data used is operating data on the Bakaru hydropower plant for 1 year. The data was obtained by using the documentation technique, while the data analysis was carried out using the Microsoft Excel program. After conducting research, it can be concluded that the condition of the Bakaru hydropower plant in 2017 is considered normal, seen from the EAF value reaching 94.15% and the average EFOR value of 2.4% with the number of Service Hours (SH) of 16,912.93 hours from 2 units. with the percentage of Service Hours to Period Hours reaching 96.53%. Meanwhile, the Net Capacity Factor of the Bakaru hydropower plant in 2017 reached 85.83%, with a total gross energy production of 945,372.50 MWh. This value exceeds the target that has been set.


2021 ◽  
Vol 12 (2) ◽  
pp. 119-130
Author(s):  
Hiro Agung Pratama ◽  
Jazaul Ikhsan ◽  
Apip Apip

The Menjer lake is the main source for Hydroelectric Power Plant of the PLTA Garung. Information about the water balance and the potential of existing water resources in the Menjer Catchment Area (DTA) is needed to obtain an efficient operating pattern, the sustainability of the Garung hydropower plant, and good management of the Menjer Lake. The purpose of this study was to estimate the inflow of three main rivers in the Menjer catchment area using HEC-HMS hydrological and water balance approach. Simulated results of the HEC-HMS model shows that the average of total the inflows of three main rivers to the Menjer lake in 2017, 2018 and 2019 during rainy season are 0.954 m3/s, 0.944 m3/s, and 1.017 m3/s, and during dry season are 0.820 m3/s, 0.783 m3/s, and 0.80 m3/s, respectively. While the prediction results of the discharge with the equation of the water balance shows that the average of total river inflows to the Menjer lake during rainy season is 2017 is 1.628 m3/s, in 2018 it is 1.579 m3/s, and in 2019 it is 3.296 m3/s and during dry season is 1.893 m3/s in 2017, 1.176 m3/s tahun 2018, and 1.893 m3/s in 2019. These results indicate that the results of discharge modeling with HEC-HMS are smaller than those predicted by the water balance equation. The study concluded that HEC-HMS could be used to predict daily inflows. However, further calibration and validation need to be carried out by recommending installing a river flow monitoring station at each river outlet.Keywords: water balance HEC-HMS, inflow prediction


2021 ◽  
Vol 16 (4) ◽  
pp. 68-71
Author(s):  
O.V. Felde ◽  

Statement of the problem. One of the postulates of the modern cognitive-discursive paradigm is the thesis about the variability of structure and content of the concept. The variability of the concept is influenced by many factors: temporal, socio-cultural, discursive, ecological, political, and individual-psychological. The relevance of the study of variability of the concept is due to a number of reasons: 1) the need for theoretical justification of the heterogeneity of concepts within the same linguoculture; 2) the possibility of revealing the ratio of basic and variable informational and axiological structures in the content of the concept; 3) the need to establish the connection of cognitive mechanisms with worldview and with the emotional reflection of the individual and / or social groups; 4) the importance of studying the factors of “constructing reality” by actualizing those or other sides of the concept. The purpose of the article is to consider the variation of the value and semantic content of the “Boguchanskaya HPP” concept, to determine the causes and factors of variation of units of expression of figurative and value layers of this concept. In order to achieve this goal, linguistic, stylistic and linguopragmatic means of expression of the “Boguchanskaya HPP” concept in different types of discourse are analyzed. The material of the research. The empirical basis of the study is the data of the National Corpus of the Russian language; materials of publications in the media about Boguchanskaya HPP, placed in the section “Press” on the main website of the hydropower plant (http://www.boges.ru/press-tsentr/smi-o-boguchanskoy-ges/publikatsii-v-presse/); publications of the website “Dam. No!” (http://www.plotina.net/); transcripts of interviews and reminiscences of displaced people from the flood zone of Boguchanskaya HPP as well as people permanently residing in Boguchansky and Kezhemsky districts of the Krasnoyarsk region. As a result of a sample listing of written and oral texts about Boguchanskaya HPP, more than 400 contexts of conceptual, figurative and axiological attributes of this concept were written out. The research methodology is as follows: in order to achieve the goal the method of conceptual analysis developed by representatives of the linguocultural direction, as well as the interpretive analysis and the method of linguistic description of the results are used. Research results. The “Boguchanskaya HPP” concept refers to dynamic, actively translated concepts of national linguoculture. It is distinguished by high modifying potential, discursive variability of its structure, and value and semantic content. Variability of the content of this concept is manifested, first of all, in different degrees of relevance of those or other conceptual features at different stages of its life cycle, as well as ambivalence of evaluations which determine the content of axiological layer of the “Boguchanskaya HPP” concept in conversational discourse, ecological Internet discourse and official mass-media discourse. The reason for the variability of the value and semantic content of the concept are socio-economic, socio-cultural and civilizational factors.


Sign in / Sign up

Export Citation Format

Share Document