Registration of Soybean Germplasm Line DB0638-70 with High Yield Potential and Diverse Genetic Background

2018 ◽  
Vol 13 (1) ◽  
pp. 96-102 ◽  
Author(s):  
Anne M. Gillen ◽  
Alemu Mengistu ◽  
Prakash R. Arelli ◽  
Salliana R. Stetina ◽  
Nacer Bellaloui
2015 ◽  
Vol 10 (1) ◽  
pp. 62-68
Author(s):  
Anne M. Gillen ◽  
Robert L. Paris ◽  
Prakash R. Arelli ◽  
James R. Smith ◽  
Alemu Mengistu

1995 ◽  
Vol 75 (3) ◽  
pp. 689-691
Author(s):  
S. J. Park ◽  
A. S. Hamill

A germplasm line, HR46, of white (navy/pea) bean (Phaseolus vulgaris L.) has been released for its insensitivity to foliar application of the herbicide metobromuron. This line is a full-season white bean in southwestern Ontario with high yield potential and acceptable canning quality. It is resistant to delta race of anthracnose and races 1 and 15 of bean common mosaic virus. Key words: Germplasm, white, bean (navy/pea), herbicide insensitivity, metobromuron


EDIS ◽  
2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Barry L. Tillman

FloRunTM ‘331’ peanut variety was developed by the University of Florida, Institute of Food and Agricultural Sciences, North Florida Research and Education Center near Marianna, Florida.  It was released in 2016 because it combines high yield potential with excellent disease tolerance. FloRunTM ‘331’ has a typical runner growth habit with a semi-prominent central stem and medium green foliage.  It has medium runner seed size with high oleic oil chemistry.


2019 ◽  
Vol 21 (1) ◽  
pp. 165 ◽  
Author(s):  
Dennis N. Lozada ◽  
Jayfred V. Godoy ◽  
Brian P. Ward ◽  
Arron H. Carter

Secondary traits from high-throughput phenotyping could be used to select for complex target traits to accelerate plant breeding and increase genetic gains. This study aimed to evaluate the potential of using spectral reflectance indices (SRI) for indirect selection of winter-wheat lines with high yield potential and to assess the effects of including secondary traits on the prediction accuracy for yield. A total of five SRIs were measured in a diversity panel, and F5 and doubled haploid wheat breeding populations planted between 2015 and 2018 in Lind and Pullman, WA. The winter-wheat panels were genotyped with 11,089 genotyping-by-sequencing derived markers. Spectral traits showed moderate to high phenotypic and genetic correlations, indicating their potential for indirect selection of lines with high yield potential. Inclusion of correlated spectral traits in genomic prediction models resulted in significant (p < 0.001) improvement in prediction accuracy for yield. Relatedness between training and test populations and heritability were among the principal factors affecting accuracy. Our results demonstrate the potential of using spectral indices as proxy measurements for selecting lines with increased yield potential and for improving prediction accuracy to increase genetic gains for complex traits in US Pacific Northwest winter wheat.


2000 ◽  
Vol 80 (4) ◽  
pp. 739-745 ◽  
Author(s):  
B. L. Duggan ◽  
D. R. Domitruk ◽  
D. B. Fowler

Crops produced in the semiarid environment of western Canada are subjected to variable and unpredictable periods of drought stress. The objective of this study was to determine the inter-relationships among yield components and grain yield of winter wheat (Triticum aestivum L) so that guidelines could be established for the production of cultivars with high yield potential and stability. Five hard red winter wheat genotypes were grown in 15 field trials conducted throughout Saskatchewan from 1989–1991. Although this study included genotypes with widely different yield potential and yield component arrangements, only small differences in grain yield occurred within trials under dryland conditions. High kernel number, through greater tillering, was shown to be an adaptation to low-stress conditions. The ability of winter wheat to produce large numbers of tillers was evident in the spring in all trials; however, this early season potential was not maintained due to extensive tiller die-back. Tiller die-back often meant that high yield potential genotypes became sink limiting with reduced ability to respond to subsequent improvements in growing season weather conditions. As tiller number increased under more favourable crop water conditions genetic limits in kernels spike−1 became more identified with yield potential. It is likely then, that tillering capacity per se is less important in winter wheat than the development of vigorous tillers with numerous large kernels spike−1. For example, the highest yielding genotype under dryland conditions was a breeding line, S86-808, which was able to maintain a greater sink capacity as a result of a higher number of larger kernels spike−1. It appears that without yield component compensation, a cultivar can be unresponsive to improved crop water conditions (stable) or it can have a high mean yield, but it cannot possess both characteristics. Key words: Triticum aestivum L., wheat, drought stress, kernel weight, kernel number, spike density, grain yield


2018 ◽  
Vol 98 (6) ◽  
pp. 1389-1391
Author(s):  
S. Torabi ◽  
B.T. Stirling ◽  
J. Kobler ◽  
M. Eskandari

OAC Bruton is an indeterminate large-seeded food-grade soybean [Glycine max (L.) Merr.] cultivar with high yield potential, high seed protein concentration, and resistance to soybean cyst nematode (SCN). OAC Bruton is developed and recommended for soybean growing areas in southwestern Ontario with 2950 or greater crop heat units. OAC Bruton is classified as a maturity group 1 (MG1) cultivar with a relative maturity of 1.8.


Agronomy ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 454 ◽  
Author(s):  
Alejandro del Pozo ◽  
Iván Matus ◽  
Kurt Ruf ◽  
Dalma Castillo ◽  
Ana María Méndez-Espinoza ◽  
...  

In Chile, durum wheat is cultivated in high-yielding Mediterranean environments, therefore breeding programs have selected cultivars with high yield potential in addition to grain quality. The genetic progress in grain yield (GY) between 1964 and 2010 was 72.8 kg ha−1 per year. GY showed a positive and significant correlation with days to heading, kernels per unit ground area and thousand kernel weight. The gluten and protein content tended to decrease with the year of cultivar release. The correlation between the δ13C of kernels and GY was negative and significant (−0.62, p < 0.05, for all cultivars; and −0.97, p < 0.001, excluding the two oldest cultivars). The yield progress (genetic plus agronomic improvements) of a set of 40–46 advanced lines evaluated between 2006 and 2015 was 569 kg ha−1 per year. Unlike other Mediterranean agro-environments, a longer growing cycle together with taller plants seems to be related to the increase in the GY of Chilean durum wheat during recent decades.


Sign in / Sign up

Export Citation Format

Share Document