scholarly journals Characterization and specificity of probiotics to prevent salmonella infection in mice

2014 ◽  
Vol 4 (8) ◽  
pp. 370 ◽  
Author(s):  
Ana Andino ◽  
Nan Zhang ◽  
Sandra Diaz-Sanchez ◽  
Carrie Yard ◽  
Sean Pendleton ◽  
...  

Background: Probiotic strains of bacteria can prevent Salmonella from causing disease by preventing the pathogen from colonizing the intestines. Two strains of probiotics, Lactobacillus acidophilius and Pediococcus spp, that were obtained from poultry fecal samples have been shown to be efficacious in poultry. The objective of this study was to determine if these strains of probiotics could prevent salmonellosis in a mouse model.Methods: First, both strains of probiotics were evaluated for in vitro efficacy to inhibit the growth of and interfere with virulence gene regulation in Salmonella enterica. For in vivo efficacy, mice was used which models Typhoid illness. Mice were divided into 2 groups: Control and treatment, Lactobacillus and Pediococcus (LP; 108 Log CFU). Two experiments were conducted. In the first experiment, the mice were treated with LP in water for the first two days of the experiment and challenged with Salmonella at day three. In the second experiment, the LP treatment was given in the water for 10 days and challenge was performed on day 11. In both experiments, at day 20 post-challenge, all mice were sacrificed, intestinal tracts and organs removed and cultured for Salmonella. Results: The probiotic strains inhibited the growth of Salmonella and down-regulation of virulence genes was noted, but dependent on the strain of Salmonella being evaluated. For the in vivo experiment, the probiotics did not afford the mice protection from infection and increasing the length of time the probiotics were administered did not improve the efficacy of the probiotics.Conclusions: It appears that these strains of probiotic bacteria are effective against Salmonella in vitro. However, these isolates did not afford protection from Salmonella infection to mice which may be due to host specifity as these isolates were obtained from poultry.Keywords: Salmonella, Probiotic, Lactobacillus, Pediococcus, Mice

2020 ◽  
Vol 139 ◽  
pp. 153-160
Author(s):  
S Peeralil ◽  
TC Joseph ◽  
V Murugadas ◽  
PG Akhilnath ◽  
VN Sreejith ◽  
...  

Luminescent Vibrio harveyi is common in sea and estuarine waters. It produces several virulence factors and negatively affects larval penaeid shrimp in hatcheries, resulting in severe economic losses to shrimp aquaculture. Although V. harveyi is an important pathogen of shrimp, its pathogenicity mechanisms have yet to be completely elucidated. In the present study, isolates of V. harveyi were isolated and characterized from diseased Penaeus monodon postlarvae from hatcheries in Kerala, India, from September to December 2016. All 23 tested isolates were positive for lipase, phospholipase, caseinase, gelatinase and chitinase activity, and 3 of the isolates (MFB32, MFB71 and MFB68) showed potential for significant biofilm formation. Based on the presence of virulence genes, the isolates of V. harveyi were grouped into 6 genotypes, predominated by vhpA+ flaB+ ser+ vhh1- luxR+ vopD- vcrD+ vscN-. One isolate from each genotype was randomly selected for in vivo virulence experiments, and the LD50 ranged from 1.7 ± 0.5 × 103 to 4.1 ± 0.1 × 105 CFU ml-1. The expression of genes during the infection in postlarvae was high in 2 of the isolates (MFB12 and MFB32), consistent with the result of the challenge test. However, in MFB19, even though all genes tested were present, their expression level was very low and likely contributed to its lack of virulence. Because of the significant variation in gene expression, the presence of virulence genes alone cannot be used as a marker for pathogenicity of V. harveyi.


2017 ◽  
Vol 5 (2) ◽  
pp. 1
Author(s):  
Mulyati Mulyati ◽  
Suryati Suryati ◽  
Irfani Baga

The study aims to isolate, characterize, and examine probiotic bacteria's inhibitory ability against Vibrio harveyi bacteria, both in-vitro and in vivo. Methods used in the study consist of 1) An Isolation of Candidate Probiotic Bacteria, 2) An Antagonistic Test of Candidate Probiotic Bacteria in vitro, 3) An Identification of Bacteria, 4) A Pathogenicity Test of Candidate Probiotic Bacteria, 5) An Antagonistic Test of Candidate Probiotic Bacteria against V. harveyi in vivo. According to the isolation of candidate probiotic bacteria, there are 18 isolated candidate probiotic. After being tested for its inhibitory ability in vitro, there are 8 isolates with zone of inhibition as follows: isolate MM 7 from intestine (22 mm), isolate MM 6 from intestine (12 mm), isolate MM 10 from sea water (10 mm), isolate MM 5 from intestine (9 mm), isolate MM 4 from intestine (8 mm), isolate MM 3 from intestine (7 mm), isolate MM 2.2 from intestine (7 mm), isolate MM 2.1 from intestine (7 mm). Eight genera of the candidate probiotic bacteria is derived from Portunid crab, they are Staphylococcus, Streptococcus, bacillus, vibrio, Alcaligenes, Lactobacillus, micrococcus. Before proceeding the V. harveyi bacterial challenge test in vivo, three potential isolates consisting of MM6, MM7 and MM10 as the probiotic bacteria are pathogenicity-tested against V. harveyi. The survival rate of Portunid crab on pathogenicity test using MM6, MM7 and MM10 generates 91.11-100%, while the control generates 100% survival rate. Variance analysis result through post-hoc Tukey's Honest Significant Difference (HSD) test at 95% confidence interval indicates that isolate MM7 and MM10 are significantly able to increase hatchling Portunid crab's survival rate.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pierre Santucci ◽  
Daniel J. Greenwood ◽  
Antony Fearns ◽  
Kai Chen ◽  
Haibo Jiang ◽  
...  

AbstractTo be effective, chemotherapy against tuberculosis (TB) must kill the intracellular population of the pathogen, Mycobacterium tuberculosis. However, how host cell microenvironments affect antibiotic accumulation and efficacy remains unclear. Here, we use correlative light, electron, and ion microscopy to investigate how various microenvironments within human macrophages affect the activity of pyrazinamide (PZA), a key antibiotic against TB. We show that PZA accumulates heterogeneously among individual bacteria in multiple host cell environments. Crucially, PZA accumulation and efficacy is maximal within acidified phagosomes. Bedaquiline, another antibiotic commonly used in combined TB therapy, enhances PZA accumulation via a host cell-mediated mechanism. Thus, intracellular localisation and specific microenvironments affect PZA accumulation and efficacy. Our results may explain the potent in vivo efficacy of PZA, compared to its modest in vitro activity, and its critical contribution to TB combination chemotherapy.


2021 ◽  
Author(s):  
L Giacani ◽  
A Haynes ◽  
M Vall Mayans ◽  
M Ubals Cazorla ◽  
C Nieto ◽  
...  

Author(s):  
Jerzy Karczewski ◽  
Christine M Brown ◽  
Yukari Maezato ◽  
Stephen P Krasucki ◽  
Stephen J Streatfield

Abstract Objectives To evaluate the efficacy of a novel lantibiotic, CMB001, against MRSA biofilms in vitro and in an in vivo experimental model of bacterial infection. Methods Antibacterial activity of CMB001 was measured in vitro after its exposure to whole blood or to platelet-poor plasma. In vitro efficacy of CMB001 against a Staphylococcus aureus biofilm was studied using scanning electron microscopy. The maximum tolerable dose in mice was determined and a preliminary pharmacokinetic analysis for CMB001 was performed in mice. In vivo efficacy was evaluated in a neutropenic mouse thigh model of infection. Results CMB001 maintained its antibacterial activity in the presence of blood or plasma for up to 24 h at 37°C. CMB001 efficiently killed S. aureus within the biofilm by causing significant damage to the bacterial cell wall. The maximum tolerable dose in mice was established to be 10 mg/kg and could be increased to 30 mg/kg in mice pretreated with antihistamines. In neutropenic mice infected with MRSA, treatment with CMB001 reduced the bacterial burden with an efficacy equivalent to that of vancomycin. Conclusions CMB001 offers potential as an alternative treatment option to combat MRSA. It will be of interest to evaluate the in vivo efficacy of CMB001 against infections caused by other pathogens, including Clostridioides difficile and Acinetobacter baumannii, and to expand its pharmacokinetic/pharmacodynamic parameters and safety profile.


2019 ◽  
Vol 59 (2) ◽  
pp. 338
Author(s):  
S. N. Magray ◽  
S. A. Wani ◽  
Z. A. Kashoo ◽  
M. A. Bhat ◽  
S. Adil ◽  
...  

The present study has determined the serological diversity, virulence-gene profile and in vitro antibiogram of avian pathogenic Escherichia coli (APEC) isolates from broiler chickens in India suspected to have died of colibacillosis. The virulence-gene profile of APEC was compared with that of the Escherichia coli isolates from faeces of apparently healthy chickens, called avian faecal E. coli (AFEC). In total, 90 representative isolates of APEC and 63 isolates of AFEC were investigated in the present study. The APEC were typed into 19 serogroups, while some isolates were rough and could not be typed. Most prevalent serogroup was O2 (24.44%). Among the eight virulence genes studied, the prevalence of seven genes (iss, iucD, tsh, cva/cvi, irp2, papC and vat) was significantly higher in APEC than in AFEC isolates. However, there was no significant difference between APEC and AFEC isolates for possession of astA gene. The most frequent gene detected among the two groups of organisms was iss, which was present in 98.88% and 44.44% of APEC and AFEC isolates respectively. The in vitro antibiogram showed that the majority (96.6%) of APEC isolates were resistant to tetracycline, while 82.2% were resistant to cephalexin, 78.8% to cotrimoxazole, 68.8% to streptomycin and 63.3% to ampicillin. However, most of them (84.45%) were sensitive to gentamicin. Thus, it is concluded that APEC from the broiler chickens carried putative virulence genes that attributed to their pathogenicity. Furthermore, the majority of APEC isolates were found to be multi-drug resistant, which, in addition to leading treatment failures in poultry, poses a public health threat.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1428
Author(s):  
Ramachandran Chelliah ◽  
Eun-Ji Kim ◽  
Eric Banan-Mwine Daliri ◽  
Usha Antony ◽  
Deog-Hwan Oh

In the present study, we screened for potential probiotic yeast that could survive under extreme frozen conditions. The antimicrobial and heat-stable properties of the isolated yeast strains Saccharomyces boulardii (S. boulardii) (KT000032, KT000033, KT000034, KT000035, KT000036, and KT000037) was analyzed and compared with commercial probiotic strains. The results revealed that the tested S. boulardii KT000032 strain showed higher resistance to gastric enzymes (bile salts, pepsin, and pancreatic enzyme) at low pH, with broad antibiotic resistance. In addition, the strain also showed efficient auto-aggregation and co-aggregation abilities and efficient hydrophobicity in the in-vitro and in-vivo C. elegens gut model. Further, the KT000032 strain showed higher antimicrobial efficiency against 13 different enteropathogens and exhibited commensal relationships with five commercial probiotic strains. Besides, the bioactive compounds produced in the cell-free supernatant of probiotic yeast showed thermo-tolerance (95 °C for two hours). Furthermore, the thermo-stable property of the strains will facilitate their incorporation into ready-to-eat food products under extreme food processing conditions.


2016 ◽  
Vol 62 (6) ◽  
pp. 514-524 ◽  
Author(s):  
Sandra Rayén Quilodrán-Vega ◽  
Julio Villena ◽  
José Valdebenito ◽  
María José Salas ◽  
Cristian Parra ◽  
...  

Probiotics are usually isolated from the gastrointestinal tract of humans and animals. The search of probiotics in human milk is a recent field of research, as the existence of the human milk microbiome was discovered only about a decade ago. To our knowledge, no reports regarding the potential probiotic effect of bacteria from swine milk have been published. In this work, we isolated several lactic acid bacteria from swine milk and evaluated them for them potential as probiotics. Among the isolated strains, Lactobacillus curvatus TUCO-5E showed antagonistic effects against swine-associated gastrointestinal pathogens. TUCO-5E was able to reduce the growth of enterotoxigenic and enterohemorrhagic Escherichia coli strains as well as pathogenic salmonella. In vitro exclusion and displacement assays in intestinal epithelial cells showed a remarkable antagonistic effect for L. curvatus TUCO-5E against Salmonella sp. strain TUCO-I7 and Salmonella enterica ATCC 13096. Moreover, by using a mouse model of Salmonella infection, we were able to demonstrate that preventative administration of L. curvatus TUCO-5E for 5 consecutive days was capable of decreasing the number of Salmonella enterica serovar Typhimurium in the liver and spleen of treated mice, compared with the controls, and prevented dissemination of the pathogen to the blood stream. Therefore, we have demonstrated here that swine milk is an interesting source of beneficial bacteria. In addition, the results of this work suggest that L. curvatus TUCO-5E is a good candidate to study in vivo the protective effect of probiotics against intestinal infection and damage induced by Salmonella infection in the porcine host.


2001 ◽  
Vol 69 (3) ◽  
pp. 1483-1487 ◽  
Author(s):  
Robert E. Throm ◽  
Stanley M. Spinola

ABSTRACT Haemophilus ducreyi expresses several putative virulence factors in vitro. Isogenic mutant-to-parent comparisons have been performed in a human model of experimental infection to examine whether specific gene products are involved in pathogenesis. Several mutants (momp, ftpA, losB, lst, cdtC, and hhdB) were as virulent as the parent in the human model, suggesting that their gene products did not play a major role in pustule formation. However, we could not exclude the possibility that the gene of interest was not expressed during the initial stages of infection. Biopsies of pustules obtained from volunteers infected with H. ducreyiwere subjected to reverse transcription-PCR. Transcripts corresponding to momp, ftpA, losB, lst, cdtB, and hhdA were expressed in vivo. In addition, transcripts for other putative virulence determinants such as ompA2, tdhA, lspA1, andlspA2 were detected in the biopsies. These results indicate that although several candidate virulence determinants are expressed during experimental infection, they do not have a major role in the initial stages of pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document