scholarly journals PRELIMINARY ANALYSIS OF E. COLI GENETIC DIVERSITY IN THE GUADALUPE RIVER: INITIAL APPROACH TO FECAL POLLUTION TRACKING

2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Samantha R. Hetherington ◽  
Teresa Le Sage Clements ◽  
Dmitri Sobolev1

Four sites in the Guadalupe River were sampled for coliform bacteria from the winter 2016 through spring 2017 to assess the microbiological pollution situation in the river and to identify pollution sources. Numbers of putative coliforms detected ranged from below detection limits to 260 CFUs per 100 mL. Over the time period sampled, coliform levels exhibited strong seasonality, probably linked to the amount of rainfall prior to the sampling date. Molecular analysis of confirmed E. coli isolates demonstrated that the spike in coliform numbers 03 December 2016 was dominated by only two unique fingerprints, suggesting the possibility of a watershed source for fecal contamination in the urban area. The diversity of E. coli fingerprints was much greater in the rural portion of the river, suggesting a variety of coliform sources, probably including wildlife. Further studies are needed to identify and manage sources of fecal pollution.

2019 ◽  
Vol 14 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Banin Maghfirotin Marta ◽  
Utami Tyas ◽  
Cahyanto Muhammad Nur ◽  
Widada Jaka ◽  
Rahayu Endang Sutriswati

Consumption of probiotics is known to influence the gut microbiota. The aim of this study was to assess the effect of probiotic powder containing Lactobacillus plantarum Dad-13 on bacterial composition in the gut by examining fecal samples of school-age children in Yogyakarta, Indonesia. This is a randomized, double-blind, placebo-controlled study. A total of 40 healthy subjects were recruited for this study and were divided into two groups: placebo group and probiotic group. The placebo group consumed skim milk and the probiotic group consumed probiotic powder containing L. plantarum Dad-13 (2 × 109 CFU/g) for 65 days. The results showed that placebo intake had no significant effect on gut microbiota; however, probiotic caused a significant increase in L. plantarum and Lactobacillus population, while decreasing the population of E. coli and non-E. coli coliform bacteria by 55% and 75%, respectively and Bifidobacteria count did not change significantly. The study concluded that consumption of probiotic powder L. plantarum Dad-13 could increase propionic acid thereby decreasing the gut pH which has an effect on the microbial population.


2018 ◽  
Vol 36 (No. 5) ◽  
pp. 378-385
Author(s):  
Vytautas Januskevicius ◽  
Grazina Januskeviciene ◽  
Gintare Zaborskiene

The aim of this study was to investigate the possible harmful effect of Sarcocystis parasites on bovine diaphragm meat quality. Meat samples were collected from 120 bulls aged 20–24 months. Meat quality was investigated using microbiological and physico-chemical (RP-HPLC, GC) methods 48 hours after slaughter. Sarcocystis infection was associated with increased fat content, lightness L* and drip loss, and decreased ash and protein percentages. Infection also had a significant effect on the amount of amino acids (AAs), which slowly decreased as the number of sarcocysts increased. The total amount of AAs correlated with glutamic acid content (R = 0.966, P &lt; 0.05). Heavily infected samples contained significantly lower amounts of putrescine, histamine, spermine and spermidine (P &lt; 0.05) and<br /> a noticeable increase in the total count of aerobic microorganisms, but no change in the numbers of E. coli and coliform bacteria in comparison with no infected samples. Sarcocysts in beef diaphragms did not cause serious changes in the technological quality of the meat, but the biological quality of infected meat was reduced.  


2009 ◽  
Vol 89 (2) ◽  
pp. 285-293 ◽  
Author(s):  
S J Bach ◽  
R P Johnson ◽  
K. Stanford ◽  
T A McAllister

Bacteriophage biocontrol has potential as a means of mitigating the prevalence of Escherichia coli O157:H7 in ruminants. The efficacy of oral administration of bacteriophages for reducing fecal shedding of E. coli O157:H7 by sheep was evaluated using 20 Canadian Arcott rams (50.0 ± 3.0) housed in four rooms (n = 5) in a contained facility. The rams had ad libitum access to drinking water and a pelleted barley-based total mixed ration, delivered once daily. Experimental treatments consisted of administration of E. coli O157:H7 (O157), E. coli O157:H7+bacteriophages (O157+phage), bacteriophages (phage), and control (CON). Oral inoculation of the rams with 109 CFU of a mixture of four nalidixic acid-resistant strains of E. coli O157:H7 was performed on day 0. A mixture of 1010 PFU of bacteriophages P5, P8 and P11 was administered on days -2, -1, 0, 6 and 7. Fecal samples collected on 14 occasions over 21 d were analyzed for E. coli O157:H7, total E. coli, total coliforms and bacteriophages. Sheep in treatment O157+phage shed fewer (P < 0.05) E. coli O157:H7 than did sheep in treatment O157. Populations of total coliforms and total E. coli were similar (P < 0.05) among treatments, implying that bacteriophage lysis of non-target E. coli and coliform bacteria in the gastrointestinal tract did not occur. Bacteriophage numbers declined rapidly over 21 d, which likely reduced the chance of collision between bacteria and bacteriophage. Oral administration of bacteriophages reduced shedding of E. coli O157:H7 by sheep, but a delivery system that would protect bacteriophages during passage through the intestine may increase the effectiveness of this strategy as well as allow phage to be administered in the feed.Key words: Escherichia coli O157:H7, bacteriophage, sheep, environment, coliforms


2020 ◽  
Vol 12 (4) ◽  
pp. 652
Author(s):  
Alessandro Sorichetta ◽  
Son V. Nghiem ◽  
Marco Masetti ◽  
Catherine Linard ◽  
Andreas Richter

The rapid economic growth, the exodus from rural to urban areas, and the associated extreme urban development that occurred in China in the decade of the 2000s have severely impacted the environment in Beijing, its vicinity, and beyond. This article presents an innovative approach for assessing mega-urban changes and their impact on the environment based on the use of decadal QuikSCAT (QSCAT) satellite data, acquired globally by the SeaWinds scatterometer over that period. The Dense Sampling Method (DSM) is applied to QSCAT data to obtain reliable annual infrastructure-based urban observations at a posting of ~1 km. The DSM-QSCAT data, along with different DSM-based change indices, were used to delineate the extent of the Beijing infrastructure-based urban area in each year between 2000 and 2009, and assess its development over time, enabling a physical quantification of its urbanization which reflects the implementation of various development policies during the same time period. Eventually, as a proxy for the impact of Beijing urbanization on the environment, the decadal trend of its infrastructure-based urbanization is compared with that of the corresponding tropospheric nitrogen dioxide (NO2) column densities as observed from the Global Ozone Monitoring Experiment (GOME) instrument aboard the second European Remote Sensing satellite (ERS-2) between 2000 and 2002, and from the SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY aboard of the ESA’s ENVIronmental SATellite (SCIAMACHY /ENVISAT) between 2003 and 2009. Results reveal a threefold increase of the yearly tropospheric NO2 column density within the Beijing infrastructure-based urban area extent in 2009, which had quadrupled since 2000.


2016 ◽  
Vol 113 (49) ◽  
pp. 14079-14084 ◽  
Author(s):  
Haipeng Li ◽  
Jinggong Xiang-Yu ◽  
Guangyi Dai ◽  
Zhili Gu ◽  
Chen Ming ◽  
...  

Accelerated losses of biodiversity are a hallmark of the current era. Large declines of population size have been widely observed and currently 22,176 species are threatened by extinction. The time at which a threatened species began rapid population decline (RPD) and the rate of RPD provide important clues about the driving forces of population decline and anticipated extinction time. However, these parameters remain unknown for the vast majority of threatened species. Here we analyzed the genetic diversity data of nuclear and mitochondrial loci of 2,764 vertebrate species and found that the mean genetic diversity is lower in threatened species than in related nonthreatened species. Our coalescence-based modeling suggests that in many threatened species the RPD began ∼123 y ago (a 95% confidence interval of 20–260 y). This estimated date coincides with widespread industrialization and a profound change in global living ecosystems over the past two centuries. On average the population size declined by ∼25% every 10 y in a threatened species, and the population size was reduced to ∼5% of its ancestral size. Moreover, the ancestral size of threatened species was, on average, ∼22% smaller than that of nonthreatened species. Because the time period of RPD is short, the cumulative effect of RPD on genetic diversity is still not strong, so that the smaller ancestral size of threatened species may be the major cause of their reduced genetic diversity; RPD explains 24.1–37.5% of the difference in genetic diversity between threatened and nonthreatened species.


1995 ◽  
Vol 58 (1) ◽  
pp. 13-18 ◽  
Author(s):  
ERROL V. RAGHUBEER ◽  
JIM S. KE ◽  
MICHAEL L. CAMPBELL ◽  
RICHARD S. MEYER

Commercial mayonnaise and refrigerated ranch salad dressing were inoculated at two levels with two strains of Escherichia coli O157:H7, a non-pathogenic E. coli, and the non-fecal coliform Enterobacter aerogenes. Results showed that at the high inoculation level (&gt;106 colony forming units [CFU]/g) in mayonnaise stored at room temperature (ca. 22°C) both strains of O157:H7 were undetected at 96 h. At the high inoculation level, all strains of coliform bacteria tested survived longer in salad dressing stored at 4°C than in mayonnaise stored at 22°C. The O157:H7 strains were still present at low levels after 17 days. The survival time in the low-level inoculum (104CFU/g) study decreased, but the survival pattern in the two products was similar to that observed in the high-level inoculum study. Slight differences in survival among strains were observed. The greater antimicrobial effect of mayonnaise may be attributable to differences in pH, water activity (aw), nutrients, storage temperature, and the presence of lysozyme in the whole eggs used in the production of commercial mayonnaise. Coliform bacteria survived longer in refrigerated salad dressing than in mayonnaise particularly at the high-level inoculum. Both mayonnaise (pH 3.91) and salad dressing (pH 4.51) did not support the growth of any of the microorganisms even though survival was observed.


2019 ◽  
Vol 2 (2) ◽  
pp. a13-19
Author(s):  
ELEXSON NILLIAN ◽  
AMIZA NUR ◽  
DIYANA NUR ◽  
AMIRAH ZAKIRAH ◽  
GRACE BEBEY

Contamination of drinks with E. coli O157:H7 served in food premises such as restaurants can cause haemorrhagic colitis and haemolytic uremic syndrome to humans. The presence or absence of faecal pathogen was demonstrated using coliform group as indicator microorganisms. Therefore, this study was conducted to detect the presence of E. coli O157:H7 in drinking water from food restaurant premise in Kota Samarahan and Kuching to ensure safe and potable drinking water is served to the consumer. A total of thirty (n=30) drink samples including six types of each of the samples are cold plain water, iced tea, iced milo, syrup and iced milk tea. Most Probable Number (MPN) procedure was used in this study to enumerate the MPN values of coliform bacteria in each drink collected. A total of 53.33% (16/30) of the drink samples showed positive E. coli detection. Then, the PCR assay showed 6.25% (one out of 16 isolates) samples were positive and carried stx1 gene produced by E. coli O157:H7 in iced milo sample types. This study showed the drinks collected from food premises was contaminated with faecal contamination, which was not safe to drink by the consumer. Therefore, preventive actions should be taken to prevent foodborne illness outbreak in future


2016 ◽  
Vol 83 (4) ◽  
Author(s):  
Danielle D. Cloutier ◽  
Sandra L. McLellan

ABSTRACT Alternative indicators have been developed that can be used to identify host sources of fecal pollution, yet little is known about how their distribution and fate compare to traditional indicators. Escherichia coli and enterococci were widely distributed at the six beaches studied and were detected in almost 95% of water samples (n = 422) and 100% of sand samples (n = 400). Berm sand contained the largest amount of E. coli (P < 0.01), whereas levels of enterococci were highest in the backshore (P < 0.01). E. coli and enterococci were the lowest in water, using a weight-to-volume comparison. The gull-associated Catellicoccus marimammalium (Gull2) marker was found in over 80% of water samples, regardless of E. coli levels, and in 25% of sand samples. Human-associated Bacteroides (HB) and Lachnospiraceae (Lachno2) were detected in only 2.4% of water samples collected under baseflow and post-rain conditions but produced a robust signal after a combined sewage overflow, despite low E. coli concentrations. Burdens of E. coli and enterococci in water and sand were disproportionately high in relation to alternative indicators when comparing environmental samples to source material. In microcosm studies, Gull2, HB, and Lachno2 quantitative PCR (qPCR) signals were reduced twice as quickly as those from E. coli and enterococci and approximately 20% faster than signals from culturable E. coli. High concentrations of alternative indicators in source material illustrated their high sensitivity for the identification of fecal sources; however, differential survival and the potential for long-term persistence of traditional fecal indicators complicate the use of alternative indicator data to account for the levels of E. coli and enterococci in environmental samples. IMPORTANCE E. coli and enterococci are general indicators of fecal pollution and may persist in beach sand, making their use problematic for many applications. This study demonstrates that gull fecal pollution is widespread at Great Lakes beaches, whereas human and ruminant contamination is evident only after major rain events. An exploration of sand as a reservoir for indicators found that E. coli was ubiquitous, while gull host markers were detected in only 25% of samples. In situ sand beach microcosms provided decay rate constants for E. coli and enterococci relative to alternative indicators, which establish comparative benchmarks that would be helpful to distinguish recent from past pollution. Overall, alternative indicators are useful for identifying sources and assessing potentially high health risk contamination events; however, beach managers should be cautious in attempting to directly link their detection to the levels of E. coli or enterococci.


Sign in / Sign up

Export Citation Format

Share Document