Rheology of blood cells as soft tissues

Biorheology ◽  
1982 ◽  
Vol 19 (3) ◽  
pp. 453-461 ◽  
Author(s):  
Richard Skalak ◽  
Shu Chien
Keyword(s):  
2013 ◽  
Vol 57 (4) ◽  
pp. 1736-1742 ◽  
Author(s):  
P. Matzneller ◽  
S. Krasniqi ◽  
M. Kinzig ◽  
F. Sörgel ◽  
S. Hüttner ◽  
...  

ABSTRACTAlthough azithromycin is extensively used in the treatment of respiratory tract infections as well as skin and skin-related infections, pharmacokinetics of azithromycin in extracellular space fluid of soft tissues, i.e., one of its therapeutic target sites, are not yet fully elucidated. In this study, azithromycin concentration-time profiles in extracellular space of muscle and subcutaneous adipose tissue, but also in plasma and white blood cells, were determined at days 1 and 3 of treatment as well as 2 and 7 days after the end of treatment. Of all compartments, azithromycin concentrations were highest in white blood cells, attesting for intracellular accumulation. However, azithromycin concentrations in both soft tissues were markedly lower than in plasma both during and after treatment. Calculation of the area under the concentration-time curve from 0 to 24 h (AUC0–24)/MIC90ratios for selected pathogens suggests that azithromycin concentrations measured in the present study are subinhibitory at all time points in both soft tissues and at the large majority of observed time points in plasma. Hence, it might be speculated that azithromycin's clinical efficacy relies not only on elevated intracellular concentrations but possibly also on its known pleotropic effects, including immunomodulation and influence on bacterial virulence factors. However, prolonged subinhibitory azithromycin concentrations at the target site, as observed in the present study, might favor the emergence of bacterial resistance and should therefore be considered with concern. In conclusion, this study has added important information to the pharmacokinetic profile of the widely used antibiotic drug azithromycin and evidentiates the need for further research on its potential for induction of bacterial resistance.


1993 ◽  
Vol 75 (3) ◽  
pp. 1097-1109 ◽  
Author(s):  
J. B. West ◽  
O. Mathieu-Costello ◽  
J. H. Jones ◽  
E. K. Birks ◽  
R. B. Logemann ◽  
...  

Bleeding into the lungs in thoroughbreds is extremely common; there is evidence that it occurs in essentially all horses in training. However, the mechanism is unknown. We tested the hypothesis that exercise-induced pulmonary hemorrhage (EIPH) is caused by stress failure of pulmonary capillaries. Three thoroughbreds with known EIPH were galloped on a treadmill, and after the horses were killed with intravenous barbiturate the lungs were removed, inflated, and fixed for electron microscopy. Ultrastructural studies showed evidence of stress failure of pulmonary capillaries, including disruptions of the capillary endothelial and alveolar epithelial layers, extensive collections of red blood cells in the alveolar wall interstitium, proteinaceous fluid and red blood cells in the alveolar spaces, interstitial edema, and fluid-filled protrusions of the endothelium into the capillary lumen. The appearances were consistent with the ultrastructural changes we have previously described in rabbit lungs at high capillary transmural pressures. Actual breaks in the endothelium and epithelium were rather difficult to find, and they were frequently associated with platelets and leukocytes that appeared to be plugging the breaks. The paucity of breaks was ascribed to their reversibility when the pressure was lowered and to the fact that 60–70 min elapsed between the gallop and the beginning of lung fixation. Capillary wall stress was calculated from pulmonary vascular pressures measured in a companion study (Jones et al. FASEB J. 6: A2020, 1992) and from measurements of the thickness of the blood-gas barrier and the radius of curvature of the capillaries. The value was as high as 8 x 10(5) dyn/cm2 (8 x 10(4) N/m2), which exceeds the breaking stress of most soft tissues. We conclude that stress failure of pulmonary capillaries is the mechanism of EIPH.


2019 ◽  
Vol 41 part 1 (2) ◽  
pp. 71-76
Author(s):  
M. D. Zheliba ◽  
M. G. Bogachyuk ◽  
M. I. Pokidko ◽  
S. D. Khimich

Relevance. According to the study’s results, steady changes in various parts of the immune system: cellular, humeral, phagocytic activity is revealed in patients with type 2 diabetes. Hyperglycemia, hyperlipidemia, insulin resistance, and adaptive ehyperinsulinemia affect the cells of the immune system, promoting the development of metabolic immunosuppressant and forming a stable immunological disorder. The purpose of the study into the morphometric and morphofunctional state of peripheral blood leukocytes in patients with type 2 diabetes to determine their significance in the development of purulent-inflammatory diseases of soft tissues are research. Materials and methods. In this work, the analysis of morphometric, cytogystochemical and laboratory study results of the control (20 healthy volunteers) and thematic (47 patients with supportive soft tissue disease son the background of type 2 diabetes mellitus) study groups with the statistical processing of the obtained results was used. Results. The investigation of morphofunctional features of nonspecific and specific protection cells for purulent inflammatory diseases of tissues on the background of type 2 diabetes showed that the basis of diabetic complications are there vealed changes in the bactericidal activity of segmented neutrophils. The trend of indicators of leukocyte formula and the distribution curve of mononuclear cells by size, as well as the growth of the lymphocyticgranulocytic index, indicate a chronic formation of endotoxin synthesize of diabetes. Conclusions. Lowering the level of cationic proteins, the activity of myeloperoxidase and the NBT-test under stimulation of neutrophil granulocytes bylectinsis a sign of unsatisfactory state of the bactericidal cells system, which may be the cause of chronic and acute inflammatory processes in the body that accompany type 2 diabetes, to a functional exhaustion of the macrophage link in the organism immune defense. Keywords: type 2 diabetes, purulent-inflammatory diseases of soft tissues, immunogenesis, cytomorphometry, cytogistochemistry, immunocompetent blood cells.


Author(s):  
G. B. Melnikova ◽  
V. A. Lapitskaya ◽  
T. A. Kuznetsova ◽  
T. N. Tolstaya ◽  
S. A. Chizhik ◽  
...  

The plasma of the atmospheric barrier discharge (PBR) is used to treat various types of diseases and damage to the skin and soft tissues; however, the mechanism of interaction of PBR with biological material has not been precisely established to date. One of the promising methods for estimation changes in the structure and properties of cell membranes at the nanoscale is atomic force microscopy (AFM). In this article the results of the influence of the barrier discharge low-temperature plasma on the structure and properties of erythrocytes and platelets are presented. By the AFM-method, the shape, morphology of membranes, and adhesive forces on the surface of the cells were determined, which is one of the characteristic parameters for assessing changes occurring at the molecular level with the cell membrane. In this work, we used an experimental complex for generating a low-temperature plasma of a dielectric barrier discharge based on a coaxial type device and an adjustable source power from 10 to 30 W. A change in the structure of the erythrocyte membranes without changing the shape of the cells themselves was established. On the non-fixed erythrocytes, the adhesion force is increased after exposure. On the surface of both erythrocytes and platelets, the presence of particles of submicron size was established, which may be due to the release of cell contents or the destructive effect of plasma on the proteins of the outer layer of the membrane. The cells, which are fixed with a 0.5-mm solution of glutaraldehyde on mica substrates, both retain their disk-like shape and membrane structure, which may be due to the formation of covalent cross-links between membrane lipids and glutaraldehyde, and residual liquid content in the cell volume after interaction with a chemical reagent. Red blood cells are more resistant to short-term exposure to PBR (1 minute) compared with platelets. The results of the studies can be used to establish patterns and the biochemical processes under the influence of PBR on blood cells.


2010 ◽  
Vol 02 (01n02) ◽  
pp. 127-145 ◽  
Author(s):  
YILING LU ◽  
WEN WANG

This study focuses on the movement of particles and extracellular fluid in soft tissues and microvessels. It analyzes modeling applications in biological and physiological fluids at a range of different length scales: from between a few tens to several hundred nanometers, on the endothelial glycocalyx and its effects on interactions between blood and the vessel wall; to a few micrometers, on movement of blood cells in capillaries and transcapillary exchange; to a few millimetres and centimetres, on extracellular matrix deformation and interstitial fluid movement in soft tissues. Interactions between blood cells and capillary wall are discussed when the sizes of the two are of the same order of magnitude, with the glycocalyx on the endothelial and red cell membranes being considered. Exchange of fluid, solutes, and gases by microvessels are highlighted when capillaries have counter-current arrangements. This anatomical feature exists in a number of tissues and is the key in the renal medulla on the urinary concentrating mechanism. The paper also addresses an important phenomenon on the transport of macromolecules. Concentration polarization of hyaluronan on the synovial lining of joint cavities is presented to demonstrate how the mechanism works in principle and how model predictions agree to experimental observations quantitatively.


2021 ◽  
Vol 9 ◽  
Author(s):  
Magdalena Warczak ◽  
Katarzyna Krajewska ◽  
Justyna Chałubińska-Fendler ◽  
Magdalena Osial

The human skeleton is truly amazing. It is a moving frame that protects soft tissues and organs, while simultaneously storing minerals and producing blood cells and immune cells. Bones also have an amazing ability to rebuild and repair themselves. There is no need to worry much if you break a bone because, with the support of your doctors and therapists, the bone should heal itself. Bones have a flexible structure that serves as the scaffolding for the minerals that create a strong and stable skeleton. Unfortunately, bone strength may decrease with age or due to food or hormonal deficiencies. When you experience pain, swelling, or bruising following a fall, you should go to the doctor to see if you have a bone fracture. But do not worry—remember that bones can repair themselves! Have you ever wondered how bone healing happens? You can find the answers in this article.


Author(s):  
Kosuke Ueda ◽  
Hiroto Washida ◽  
Nakazo Watari

IntroductionHemoglobin crystals in the red blood cells were electronmicroscopically reported by Fawcett in the cat myocardium. In the human, Lessin revealed crystal-containing cells in the periphral blood of hemoglobin C disease patients. We found the hemoglobin crystals and its agglutination in the erythrocytes in the renal cortex of the human renal lithiasis, and these patients had no hematological abnormalities or other diseases out of the renal lithiasis. Hemoglobin crystals in the human erythrocytes were confirmed to be the first case in the kidney.Material and MethodsTen cases of the human renal biopsies were performed on the operations of the seven pyelolithotomies and three ureterolithotomies. The each specimens were primarily fixed in cacodylate buffered 3. 0% glutaraldehyde and post fixed in osmic acid, dehydrated in graded concentrations of ethanol, and then embedded in Epon 812. Ultrathin sections, cut on LKB microtome, were doubly stained with uranyl acetate and lead citrate.


Author(s):  
Delma P. Thomas ◽  
Dianne E. Godar

Ultraviolet radiation (UVR) from all three waveband regions of the UV spectrum, UVA (320-400 nm), UVB (290-320 nm), and UVC (200-290 nm), can be emitted by some medical devices and consumer products. Sunlamps can expose the blood to a considerable amount of UVR, particularly UVA and/or UVB. The percent transmission of each waveband through the epidermis to the dermis, which contains blood, increases in the order of increasing wavelength: UVC (10%) < UVB (20%) < UVA (30%). To investigate the effects of UVR on white blood cells, we chose transmission electron microscopy to examine the ultrastructure changes in L5178Y-R murine lymphoma cells.


Author(s):  
John A. Trotter

Hemoglobin is the specific protein of red blood cells. Those cells in which hemoglobin synthesis is initiated are the earliest cells that can presently be considered to be committed to erythropoiesis. In order to identify such early cells electron microscopically, we have made use of the peroxidatic activity of hemoglobin by reacting the marrow of erythropoietically stimulated guinea pigs with diaminobenzidine (DAB). The reaction product appeared as a diffuse and amorphous electron opacity throughout the cytoplasm of reactive cells. The detection of small density increases of such a diffuse nature required an analytical method more sensitive and reliable than the visual examination of micrographs. A procedure was therefore devised for the evaluation of micrographs (negatives) with a densitometer (Weston Photographic Analyzer).


Sign in / Sign up

Export Citation Format

Share Document