Effect of D-mannose on Philadelphia chromosome-positive leukemia cells

2021 ◽  
pp. 1-10
Author(s):  
Seiichi Okabe ◽  
Yuko Tanaka ◽  
Akihiko Gotoh

BACKGROUND: Although Abelson (ABL) tyrosine kinase inhibitors (TKIs) have demonstrated potency against chronic myeloid leukemia (CML), resistance to ABL TKIs can develop in CML patients after discontinuation of therapy. OBJECTIVE: Glucose metabolism may be altered in CML cells because glucose is a key metabolite used by tumor cells. We investigated whether D-mannose treatment induced metabolic changes in CML cells and reduced CML growth in the presence of ABL TKIs. METHODS: We investigated whether D-mannose treatment induced metabolic changes in CML cells and reduced CML growth in the presence of ABL TKIs. RESULTS: Treatment with D-mannose for 72 h inhibited the growth of K562 cells. Combined treatment using ABL TKIs and D-mannose induced a significantly higher level of cytotoxicity in Philadelphia chromosome (Ph)-positive leukemia cells than in control cells. In the mouse model, severe toxicity was observed as evidenced by body weight loss in the ponatinib and D-mannose combination treatment groups. CONCLUSION: Our results indicate that metabolic reprogramming may be a useful strategy against Ph-positive leukemia cells. However, caution should be exercised during clinical applications.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5428-5428 ◽  
Author(s):  
Seiichi Okabe ◽  
Tetsuzo Tauchi ◽  
Yuko Tanaka ◽  
Kazuma Ohyashiki

Abstract Introduction: Chronic myeloid leukemia (CML) is characterized by the t(9:22) translocation known as the Philadelphia chromosome (Ph). Although ABL tyrosine kinase inhibitors (ABL TKI) such as imatinib, dasatinib and nilotinib have improved CML treatment, such therapies cannot cure patients with Philadelphia chromosome (Ph)-positive leukemia because of leukemia stem cells. Moreover, some patients develop BCR-ABL point mutations including T315I and become resistant to ABL TKI therapy. These leukemia stem cells are contained within a niche in the bone marrow and are often impervious to current treatments. Therefore, new approach against BCR-ABL mutant cells and LSCs may improve the outcome of Ph-positive leukemia patients. B cell lymphoma 2 (BCL-2) protein families are key regulator of apoptosis and highly promising targets for the development of anti-cancer treatment. Venetoclax, also known as ABT-199 is a selective, orally bioavailable BCL-2 inhibitor. Venetoclax is investigated in a pivotal phase 3 clinical trial against hematological malignancies such as chronic lymphocytic leukemia (CLL) and approved for the treatment of patients with CLL. Materials and methods: In this study, we investigated whether venetoclax could suppress Ph-positive leukemia cells including T315I mutation and primary samples. Results: BCL-2 expression was found in Ph-positive leukemia cells including primary samples, however, BCL-2 expression was reduced in K562 cells. We found 72 h venetoclax treatment inhibited the growth of Ba/F3 BCR-ABL and KCL-22 cells in a dose dependent manner. However, venetoclax activity was reduced in K562 cells. We examined the intracellular signaling after treatment of venetoclax. Phosphorylation of BCR-ABL and Crk-L was not reduced. However, activity of caspase 3, poly (ADP-ribose) polymerase (PARP) was increased. We next investigated the efficacy between ABL TKI and venetoclax by using these cell line. Combined treatment of Ba/F3 BCR-ABL cells with imatinib and venetoclax caused significantly more cytotoxicity than each drug alone. Apoptotic cells were also increased. Phosphorylation of BCR-ABL, Crk-L was reduced and cleaved caspase 3 and PARP activity was increased after imatinib and venetoclax treatment. We investigated the venetoclax activity against T315I positive cells. Venetoclax potently induced cell growth inhibition of Ba/F3 T315I mutant cells in a dose dependent manner. Combined treatment of Ba/F3 T315I mutant cells with ponatinib and venetoclax caused significantly more cytotoxicity than each drug alone. Apoptotic cells were also increased. Phosphorylation of BCR-ABL, Crk-L was reduced and cleaved PARP was increased after ponatinib and venetoclax treatment. To assess the activity of ponatinib and venetoclax, we examined tumor formation in mice model. We injected subcutaneously 1×107 Ba/F3 T315I mutant cells in nude mice. A dose of 20 mg/kg/day p.o of ponatinib and 50 mg/kg/day p.o of venetoclax inhibited tumor growth and reduced tumor volume compared with control mice. In the immunohistochemical analysis, we found that tumors in mice treated with ponatinib and venetoclax exhibited an increase in apoptotic cells. We also found that co-treatment with ponatinib and venetoclax increased mouse survival. The treatments were well tolerated with no animal health concerns observed. We also found that the treatment of venetoclax exhibits cell growth inhibition against CD34 positive CML samples. Conclusion: The results of our study indicate that the BCL-2 inhibitor venetoclax may be a powerful strategy against ABL TKI resistant cells including T315I mutation and enhance cytotoxic effects of ABL TKI against those Ph-positive leukemia cells. Disclosures Tauchi: Pfizer Inc.: Research Funding. Ohyashiki:Novartis International AG,: Honoraria, Research Funding; Bristol-Myers Squibb: Research Funding.


Author(s):  
Sezgi Kipcak ◽  
Buket Ozel ◽  
Cigir B. Avci ◽  
Leila S. Takanlou ◽  
Maryam S. Takanlou ◽  
...  

Background: Chronic myeloid leukemia (CML), is characterized by a reciprocal translocation t(9;22) and forms the BCR/ABL1 fusion gene, which is called the Philadelphia chromosome. The therapeutic targets for CML patients which are mediated with BCR/ABL1 oncogenic are tyrosine kinase inhibitors such as imatinib, dasatinib, and nilotinib. The latter two of which have been approved for the treatment of imatinib-resistant or intolerance CML patients. Mitotic catastrophe (MC) is one of the non-apoptotic mechanisms which frequently initiated in types of cancer cells in response to anti-cancer therapies; pharmacological inhibitors of G2 checkpoint members or genetic suppression of PLK1, PLK2, ATR, ATM, CHK1, and CHK2 can trigger DNA-damage-stimulated mitotic catastrophe. PLK1, AURKA/B anomalously expressed in CML cells, that phosphorylation and activation of PLK1 occur by AURKB at centromeres and kinetochores. Objective: The purpose of this study was to investigate the effect of dasatinib on the expression of genes in MC and apoptosis pathways in K562 cells. Methods: Total RNA was isolated from K-562 cells treated with the IC50 value of dasatinib and untreated cells as a control group. The expression of MC and apoptosis-related genes were analyzed by the qRT-PCR system. Results: The array-data demonstrated that dasatinib-treated K562 cells significantly caused the decrease of several genes (AURKA, AURKB, PLK, CHEK1, MYC, XPC, BCL2, and XRCC2). Conclusion: The evidence supply a basis to support clinical researches for the suppression of oncogenes such as PLKs with AURKs in the treatment of types of cancer especially chronic myeloid leukemia.


2020 ◽  
Vol 21 (16) ◽  
pp. 5776 ◽  
Author(s):  
Lukasz Komorowski ◽  
Klaudyna Fidyt ◽  
Elżbieta Patkowska ◽  
Malgorzata Firczuk

Philadelphia chromosome (Ph) results from a translocation between the breakpoint cluster region (BCR) gene on chromosome 9 and ABL proto-oncogene 1 (ABL1) gene on chromosome 22. The fusion gene, BCR-ABL1, is a constitutively active tyrosine kinase which promotes development of leukemia. Depending on the breakpoint site within the BCR gene, different isoforms of BCR-ABL1 exist, with p210 and p190 being the most prevalent. P210 isoform is the hallmark of chronic myeloid leukemia (CML), while p190 isoform is expressed in majority of Ph-positive B cell acute lymphoblastic leukemia (Ph+ B-ALL) cases. The crucial component of treatment protocols of CML and Ph+ B-ALL patients are tyrosine kinase inhibitors (TKIs), drugs which target both BCR-ABL1 isoforms. While TKIs therapy is successful in great majority of CML patients, Ph+ B-ALL often relapses as a drug-resistant disease. Recently, the high-throughput genomic and proteomic analyses revealed significant differences between CML and Ph+ B-ALL. In this review we summarize recent discoveries related to differential signaling pathways mediated by different BCR-ABL1 isoforms, lineage-specific genetic lesions, and metabolic reprogramming. In particular, we emphasize the features distinguishing Ph+ B-ALL from CML and focus on potential therapeutic approaches exploiting those characteristics, which could improve the treatment of Ph+ B-ALL.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3693-3693
Author(s):  
Seiichi Okabe ◽  
Tetsuzo Tauchi ◽  
Yuko Tanaka ◽  
Juri Sakuta ◽  
Kazuma Ohyashiki

Abstract Introduction: Chronic myeloid leukemia (CML) is characterized by the t(9:22) translocation known as the Philadelphia chromosome (Ph). ABL tyrosine kinase inhibitor (TKI), imatinib and second-generation ABL TKIs, nilotinib and dasatinib have demonstrated the potency against CML patients. However, resistance to ABL TKI can develop in CML patients due to BCR-ABL point mutations. Moreover, ABL TKIs do not eliminate the leukemia stem cells (LSCs). Therefore, new approach against BCR-ABL mutant cells and LSCs may improve the outcome of Ph-positive leukemia patients. In eukaryotic cells, histone acetylation/deacetylation is important in transcriptional regulation. Chromatin acetylation is controlled by the opposing effects of two families of enzymes: histone acetyltransferases (HAT) and histone deacetylases (HDACs). Deregulation of HDAC activity may be a cause of malignant disease in humans. Phosphoinositide 3-kinase (PI3K) pathway also regulates cell metabolism, proliferation and survival. Furthermore, aberrant activation of PI3K signaling pathway has been shown to be important in initiation maintenance of human cancers. CUDC-907 is an oral inhibitor of class I PI3K as well as class I and II HDAC enzymes. CUDC-907 is currently being investigated in a pivotal phase 1 clinical trial against hematological malignancies such as malignant lymphoma. We suggested that CUDC-907 mediated inhibition PI3K and HDAC activity and in combination with ABL TKIs may abrogate the proliferation and survival of Ph-positive leukemia cells including T315I mutation and ABL TKI resistant. Materials and methods: In this study, we investigated the combination therapy with a CUDC-907 and an ABL TKIs (imatinib, nilotinib and ponatinib) by using the BCR-ABL positive cell line, K562, murine Ba/F3 cell line which was transfected with T315I mutant, nilotinib resistant K562 and ponatinib resistant Ba/F3 cells and primary samples. Results: The treatment of imatinib, nilotinib and ponatinib exhibits cell growth inhibition partially against K562 cells in the presence of feeder cell (HS-5). We found that mRNA of PI3K subunit is significantly increased after a co-culture with HS-5 in K562 and primary CD34 positive CML samples. 72 h treatment of CUDC-907 exhibits cell growth inhibition and induced apoptosis against K562 cells in a dose dependent manner. We examined the intracellular signaling after treatment of CUDC-907. Phosphorylation of JNK, histone acetylation and activity of caspase 3, poly (ADP-ribose) polymerase (PARP) was increased. Anti-apoptotic protein, Mcl-1 was decreased in a dose dependent. We next investigated the efficacy between imatinib and CUDC-907 by using these cell line. Combined treatment of K562 cells with imatinib and CUDC-907 caused significantly more cytotoxicity than each drug alone. Caspase activity was increased and Akt activity was reduced. Phosphorylation of BCR-ABL, Crk-L was reduced and cleaved PARP was increased after imatinib and CUDC-907 treatment. We investigated the CUDC-907 activity against T315I positive cells. CUDC-907 potently induced cell growth inhibition of Ba/F3 T315I cells in a dose dependent manner. Combined treatment of Ba/F3 T315I cells with ponatinib and CUDC-907 caused significantly more cytotoxicity than each drug alone. Caspase activity was increased and Akt activity was reduced after ponatinib and CUDC-907 treatment. To assess the activity of ponatinib and CUDC-907, we performed to test on tumor formation in mice. We injected nude mice subcutaneously with Ba/F3 T315I mutant cells. A dose of 20 mg/kg/day p.o of ponatinib and 30 mg/kg/day p.o of CUDC-907 inhibited tumor growth and reduced tumor volume compared with control mice. The treatments were well tolerated with no animal health concerns observed. We also found that the treatment of CUDC-907 exhibits cell growth inhibition against Ba/F3 ponatinib resistant cells, K562 nilotinib resistant cells, T315I mutant primary samples and CD34 positive CML samples. Conclusion: These results indicated that administration of the dual PI3K and HDAC inhibitor, CUDC-907 may be a powerful strategy against ABL TKI resistant cells including T315I mutation and enhance cytotoxic effects of ABL TKI against those Ph-positive leukemia cells. Disclosures No relevant conflicts of interest to declare.


2017 ◽  
Vol 11 ◽  
pp. 117955491770287 ◽  
Author(s):  
Ana P Azevedo ◽  
Alice Reichert ◽  
Celina Afonso ◽  
Maria D Alberca ◽  
Purificação Tavares ◽  
...  

Introduction: The identification of BCR-ABL expression as the defining leukemogenic event in chronic myeloid leukemia (CML) and the introduction of BCR-ABL tyrosine kinase inhibitors in 2001 have revolutionized disease management, leading to a reduction in mortality rates and accordingly an increase in the estimated prevalence of CML. Case report: Based on medical records and clinical follow-up, the authors present the case of a Philadelphia chromosome–positive CML patient who developed resistance to imatinib. Quantitative reverse transcription-polymerase chain reaction testing revealed a V280G BCR-ABL mutation. Discussion and conclusions: This is the first report describing a new BCR-ABL kinase domain mutation—V280G—that might be associated with resistance to imatinib. Approximately 15% to 30% of patients treated with imatinib discontinue treatment due to resistance or intolerance. More than 90 BCR-ABL mutations were detected so far, conferring variable degrees of drug resistance, with consequent clinical, therapeutic, and prognostic impact.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2136-2136
Author(s):  
Seiichi Okabe ◽  
Tetsuzo Tauchi ◽  
Kazuma Ohyashiki

Abstract Abstract 2136 Imatinib has shown clinical efficacy against Philadelphia chromosome (Ph) positive leukemia cells and it is now the standard care for initial therapy. However, recent studies reported imatinib are not effective in quiescent primitive chronic myeloid leukemia (CML) stem cells. Moreover, many Ph-positive leukemia patients develop resistance or fail to respond to imatinib by mutation in the ABL kinase domain in clinically. These results indicated that alternative combination therapy such as BCR-ABL targeting tyrosine kinase inhibitors (TKIs) and nontoxic agents are required to cure the Ph positive leukemia patients. Hedgehog (Hh)- Glioma-associated oncogene homolog (Gli) signaling regulates self-renewal of stem cells and implicates in a large number of human cancers. One of the Hh inhibitor, GDC-0449 is a potent small molecule inhibitor of Hedgehog-Gli pathway. It has been reported GDC-0449 showed high target specificity and demonstrated antiproliferative activity against tumors and it is now in clinical trial. Therefore, combination therapy using a BCR-ABL tyrosine kinase inhibitors and a Hedgehog-Gli inhibitor, GDC-0449 may help prevent CML relapse and these approaches may be expected to improve the outcomes of Ph-positive leukemia patients. In this study, we investigated the GDC-0449 efficacy by using the BCR-ABL positive cell lines, OM9;22, K562 and primary samples when leukemic cells were protected by the feeder cell line, S9 cells. We examined a comprehensive drug combination experiment using GDC-0449 and dual Src/ABL tyrosine kinase inhibitor, dasatinib. Gli proteins (Gli1, Gli2 and Gli3) were existed in Ph-positive cell lines. We found the cell numbers of OM9;22 were significantly increased with the feeder cell line, S9 cells compared to without S9 cells. The treatment of dasatinib exhibits cell growth inhibition partially against OM9;22 cells in the presence of feeder cell line, S9 cells. Caspase-3 activity by 100 nM dasatinib treatment was also reduced in the presence of S9 cells. 72 h of combined treatment of Ph-positive leukemia cells with 10 μM of GDC-0449 and 100 nM of dasatinib in the presence of feeder cell line, caused significantly more cytotoxicity than each drug alone. We next investigated the efficacy and intracellular signaling of GDC-0449. The treatment of GDC-0449 exhibits cell growth inhibition and induced apoptosis against OM9;22 cells in a dose and time dependent manner. Expression of Gli1 and Gli2 proteins were reduced after GDC-0449 treatment. 10 μM of GDC-0449 also inhibited the growth of Ph-positive primary samples by colony assay. Another Hh inhibitor, SANT-2 also exhibits cell growth inhibition against OM9;22 cells in a dose dependent manner. Data from this study suggested that administration of the Hh inhibitor, GDC-0449 may be a powerful strategy against Ph-positive leukemia cells and enhance cytotoxic effects of dasatinib in the presence of feeder cell. Disclosures: Ohyashiki: Nippon Shinyaku Co., Ltd.: Research Funding.


1997 ◽  
Vol 83 (4) ◽  
pp. 756-761 ◽  
Author(s):  
Arunkumar B. Deora ◽  
Michelle B. Miranda ◽  
S.G. Anand Rao

Aims and background K562 cells are growth factor independent and neither function as stem cells nor differentiate into functional end cells. They are blast cells. There is evidence that the constitutively expressed bcr-abl tyrosine kinase might be responsible for the maintenance of the blast state of CML cells. We have studied the effect of two tyrosine kinase inhibitors, quercetin and genistein, on K562 cells. Methods K562 cells were treated with quercetin/genistein for a period of 72 hrs and then subjected to staining for apoptosis and erythroid differentiation and Western blotting with c-abl and phosphotyrosine monoclonal antibodies. Results The IC50 value was found to be 9.2 μg/ml for quercetin and 11.8 μg/ml for genistein. Quercetin-treated cells did not show any differentiation but showed 68% apoptosis as compared to 7% in control. Genistein-treated cells showed 16% apoptosis and 15% erythroid differentiation. Quercetin reduced the level of p210 by 74% and its phosphotyrosine content by 67.6%. Genistein reduced p210 by 77.8% and its phosphotyrosine content by 16%. Conclusion Both quercetin and genistein are able to down-modulate the tyrosine kinase activity of p210 as well as bring about a decrease in the content of the protein with different effects: quercetin induced apoptosis while genistein brought about both differentiation and apoptosis.


Sign in / Sign up

Export Citation Format

Share Document