Anti-Leukemic Effects of Venetoclax on Philadelphia Chromosome Positive Leukemia Cells

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5428-5428 ◽  
Author(s):  
Seiichi Okabe ◽  
Tetsuzo Tauchi ◽  
Yuko Tanaka ◽  
Kazuma Ohyashiki

Abstract Introduction: Chronic myeloid leukemia (CML) is characterized by the t(9:22) translocation known as the Philadelphia chromosome (Ph). Although ABL tyrosine kinase inhibitors (ABL TKI) such as imatinib, dasatinib and nilotinib have improved CML treatment, such therapies cannot cure patients with Philadelphia chromosome (Ph)-positive leukemia because of leukemia stem cells. Moreover, some patients develop BCR-ABL point mutations including T315I and become resistant to ABL TKI therapy. These leukemia stem cells are contained within a niche in the bone marrow and are often impervious to current treatments. Therefore, new approach against BCR-ABL mutant cells and LSCs may improve the outcome of Ph-positive leukemia patients. B cell lymphoma 2 (BCL-2) protein families are key regulator of apoptosis and highly promising targets for the development of anti-cancer treatment. Venetoclax, also known as ABT-199 is a selective, orally bioavailable BCL-2 inhibitor. Venetoclax is investigated in a pivotal phase 3 clinical trial against hematological malignancies such as chronic lymphocytic leukemia (CLL) and approved for the treatment of patients with CLL. Materials and methods: In this study, we investigated whether venetoclax could suppress Ph-positive leukemia cells including T315I mutation and primary samples. Results: BCL-2 expression was found in Ph-positive leukemia cells including primary samples, however, BCL-2 expression was reduced in K562 cells. We found 72 h venetoclax treatment inhibited the growth of Ba/F3 BCR-ABL and KCL-22 cells in a dose dependent manner. However, venetoclax activity was reduced in K562 cells. We examined the intracellular signaling after treatment of venetoclax. Phosphorylation of BCR-ABL and Crk-L was not reduced. However, activity of caspase 3, poly (ADP-ribose) polymerase (PARP) was increased. We next investigated the efficacy between ABL TKI and venetoclax by using these cell line. Combined treatment of Ba/F3 BCR-ABL cells with imatinib and venetoclax caused significantly more cytotoxicity than each drug alone. Apoptotic cells were also increased. Phosphorylation of BCR-ABL, Crk-L was reduced and cleaved caspase 3 and PARP activity was increased after imatinib and venetoclax treatment. We investigated the venetoclax activity against T315I positive cells. Venetoclax potently induced cell growth inhibition of Ba/F3 T315I mutant cells in a dose dependent manner. Combined treatment of Ba/F3 T315I mutant cells with ponatinib and venetoclax caused significantly more cytotoxicity than each drug alone. Apoptotic cells were also increased. Phosphorylation of BCR-ABL, Crk-L was reduced and cleaved PARP was increased after ponatinib and venetoclax treatment. To assess the activity of ponatinib and venetoclax, we examined tumor formation in mice model. We injected subcutaneously 1×107 Ba/F3 T315I mutant cells in nude mice. A dose of 20 mg/kg/day p.o of ponatinib and 50 mg/kg/day p.o of venetoclax inhibited tumor growth and reduced tumor volume compared with control mice. In the immunohistochemical analysis, we found that tumors in mice treated with ponatinib and venetoclax exhibited an increase in apoptotic cells. We also found that co-treatment with ponatinib and venetoclax increased mouse survival. The treatments were well tolerated with no animal health concerns observed. We also found that the treatment of venetoclax exhibits cell growth inhibition against CD34 positive CML samples. Conclusion: The results of our study indicate that the BCL-2 inhibitor venetoclax may be a powerful strategy against ABL TKI resistant cells including T315I mutation and enhance cytotoxic effects of ABL TKI against those Ph-positive leukemia cells. Disclosures Tauchi: Pfizer Inc.: Research Funding. Ohyashiki:Novartis International AG,: Honoraria, Research Funding; Bristol-Myers Squibb: Research Funding.

2021 ◽  
pp. 1-10
Author(s):  
Seiichi Okabe ◽  
Yuko Tanaka ◽  
Akihiko Gotoh

BACKGROUND: Although Abelson (ABL) tyrosine kinase inhibitors (TKIs) have demonstrated potency against chronic myeloid leukemia (CML), resistance to ABL TKIs can develop in CML patients after discontinuation of therapy. OBJECTIVE: Glucose metabolism may be altered in CML cells because glucose is a key metabolite used by tumor cells. We investigated whether D-mannose treatment induced metabolic changes in CML cells and reduced CML growth in the presence of ABL TKIs. METHODS: We investigated whether D-mannose treatment induced metabolic changes in CML cells and reduced CML growth in the presence of ABL TKIs. RESULTS: Treatment with D-mannose for 72 h inhibited the growth of K562 cells. Combined treatment using ABL TKIs and D-mannose induced a significantly higher level of cytotoxicity in Philadelphia chromosome (Ph)-positive leukemia cells than in control cells. In the mouse model, severe toxicity was observed as evidenced by body weight loss in the ponatinib and D-mannose combination treatment groups. CONCLUSION: Our results indicate that metabolic reprogramming may be a useful strategy against Ph-positive leukemia cells. However, caution should be exercised during clinical applications.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1169-1169
Author(s):  
Alessandra Ferrajoli ◽  
Stefan Faderl ◽  
Quin Van ◽  
David M. Harris ◽  
Waldemar Priebe ◽  
...  

Abstract Janus kinases (JAK) are tyrosine kinases associated with both cytokine receptors and downstream signal transducer and activator of transcription (Stat) proteins. Upon activation of JAK by a variety of cytokines and growth factors, Stats translocate to the nucleus and promote transcription of target genes. Constitutive activation of Stat proteins in AML has been associated with poor prognosis and AG490, an inhibitor of this pathway, was shown to suppress AML cell proliferation in vitro. WP-1066 represents a further development of AG490 with biological activity at significantly lower concentrations. Therefore, we studied the effects of WP-1066 on the AML cell lines OCIM2 and K562 and on fresh bone marrow aspirates obtained from five newly diagnosed AML patients. We found that WP-1066 inhibited the proliferation of OCIM2 and K562 cells and of fresh marrow AML blast colony-forming cells in a dose-dependent fashion at concentrations ranging from 0.5 to 3 μM. WP-1066 completely abrogated the growth of leukemia cells at a concentration of 3 μM. Furthermore, WP-1066 induced a cell cycle arrest of OCIM2 and K562 cells. Incubation of AML cells with 2 μM of WP-1066 resulted in a time-dependent accumulation of OCIM2 and K562 cells in the sub-G0 phase of the cell cycle. Those leukemia cells underwent apoptotic cell death as assessed by annexin V-FITC. Incubation of OCIM2 cells with 0.5 to 3 μM WP-1066 for 2 hours induced a dose-dependent apoptosis in 52% of the cells. A 4 hour exposure of either OCIM2 or K562 cells to 2 μM of WP-1066 induced caspase 3 activation and PARP cleavage. As expected, WP-1066 inhibited Stat3 and Stat5 phosphorylation in K562 and OCIM2 cells both in a time- and dose-dependent manner, confirming that inhibition of the JAK-Stat pathway is its mechanism of action. Overall, our data showing that WP-1066 inhibits the JAK-Stat pathway, suppresses proliferation, induces cell cycle arrest and apoptosis of AML cells, suggest that the activity of this compound warrants further exploitation aimed at developing WP-1066 for future therapy of AML.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 850-850
Author(s):  
Alessandra Ferrajoli ◽  
Stefan Faderl ◽  
Tony Wang ◽  
Waldemar Priebe ◽  
Hagop Kantarjian ◽  
...  

Abstract Prognosis for patients with Philadelphia chromosome (Ph) positive ALL remains dismal. Ph+ ALL is characterized by the activation of several tyrosine kinases that provide the neoplastic clone with its proliferative capacity and survival advantage. We found that WP1066, a novel derivative of the tyrphostin AG490, inhibits the JAK-STAT pathway and cytokine-dependent and independent signaling pathways. Therefore, we sought to investigate the activity of WP1066 in Ph+ ALL. To do this, we first studied the effect of WP1066 on the Ph+ ALL cell lines Z-119 and Z-181 (Estrov Z et al. J. Cell Physiol.166(3):18, 1996). Using the MTT assay we found that WP1066 inhibited the growth of both Z-119 and Z-181 cells in a concentration-dependent manner with only 8% and 4% of the cells surviving at a concentration of 4 mM, respectively. Similarly, the clonogenic growth of both Z-119 and Z-181 cells was effectively inhibited by WP1066 with more than 90% reduction in colony numbers at concentration of 4 mM. Using Western Immunoblott analysis of cell lysates, we found that 4 mM of WP1066 induced caspase-3 cleavage in a time- and dose-dependent manner in both Z-119 and Z-181 cells. In addition, WP-1066 downregulated uncleaved poly (adenosine diphosphate-ribose) polymerase (PARP) and upregulated cleaved PARP protein levels in a time-dependent manner after 2 hours of exposure to 4 mM. We further evaluated induction of apoptosis using the annexin V-FITC assay and showed a dose dependent increase of the fraction of apoptotic cells in both Z-119 and Z-181 cells. After 24 hour of exposure to 4 mM of WP1066 the fraction of apoptotic cells increased by 23% and 43%, respectively. To elucidate the mechanisms by which WP1066 induces growth inhibition and apoptosis in Ph+ ALL cells, we investigated the effect of this agent on the phosphatidylinositol 3-kinase (PI-3K) pathway because the PI-3K pathway is constitutively activated in Ph+ leukemias. We found that WP1066 inhibited the phosphorylation of AKT in a time-dependent fashion in both cell lines and that this inhibitory effect lasted for 24 hours. In conclusion, our data suggest that exposure to WP1066 induces caspase-dependent apoptosis, is associated with PI3-K inhibition and reduces the growth of the Ph+ cell lines Z-119 and Z-181. The activity of WP1066 in Ph+ ALL should be further studied.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1886-1886
Author(s):  
Renata Scopim-Ribeiro ◽  
João Agostinho Machado-Neto ◽  
Christopher A. Eide ◽  
Paula de Melo Campos ◽  
Priscila Santos Scheucher ◽  
...  

Abstract Introduction: Chronic myeloid leukemia (CML) is a hematological malignancy associated with the BCR-ABL1 oncoprotein, which results in deregulated kinase activity-driven leukemic phenotype. Most CML cases are successfully treated with tyrosine kinase inhibitors (TKIs) targeting BCR-ABL1, but a significant percentage of patients develop drug resistance and/or progress to blast crisis, a disease stage that is refractory to therapy. Furthermore, recent studies have provided evidence that the CML leukemia stem cell is resistant to imatinib treatment. In this sense, the identification of other crucial proteins that cooperate with BCR-ABL1 signaling pathways may represent secondary therapeutic targets optimize treatment strategies. Increased IRS1 mRNA expression has been previously identified as positively correlated with worse overall survival in BCR-ABL1-positive adult acute lymphoblastic leukemia. In K562 cells, IRS1 has been identified as a binding partner of BCR-ABL1 and is capable of activating the PI3K/Akt/mTOR and MAPK pathways. Recently, a pharmacological IRS1/2 inhibitor (NT157) has been developed and has shown promising results in preclinical studies on solid tumors. We have previously shown that NT157 treatment reduces colony formation of primary CML cells but not in normal cells, decreases cell viability and proliferation of K562 cells, and increases apoptosis of K562 cells in a time- and dose-dependent manner (ASH 2015 - Abstract #83876). To further characterize the mechanism of the sensitivity of CML cells to IRS1/2 inhibition, here we performed PCR-based gene expression analyses in CML cells in response to NT157 treatment and investigated the effects of IRS1/2 inhibition on cell proliferation and apoptosis in Ba/F3 cells expressing wild-type or T315I mutant BCR-ABL1. Materials and Methods: K562 cells treated with vehicle or with the IRS1/2 pharmacological inhibitor NT157 (1.6 µM) for 48 hours were submitted to PCR array analysis using the PI3K-AKT Signaling Pathway and CancerPathwayFinder RT2 Profiler PCR Array kit (#PAHS-033A and #PAHS-058A, respectively; SA Biosciences, Frederick, MD, USA). Each cDNA sample was processed in a 96-well plate containing 156 signaling pathway-related genes and 5 endogenous control genes. Ba/F3 parental, BCR-ABL1WT and BCR-ABL1T315I cells were subjected to IRS1/2 pharmacological inhibition using NT157 (0.2, 0.4, 0.8, 1.6 and 3.2 µM) for 24, 48 and 72 hours and were evaluated for cell viability (MTT assay), apoptosis (annexin V/PI), and protein expression/activation (Western blot). Statistical analyses were performed by Student's t-test or Mann-Whitney test, as appropriate. Results: Sixteen genes were found to be differentially expressed (fold change ≥ 2); 5 upregulated genes (FOXO3A, CDKN1A, FOS, JUN, VEGF) and 1 downregulated gene (E2F1) were chosen for validation in a larger number of experiments. Notably, NT157 treatment also resulted in significant dose- and time-dependent decrease in viability in BCR-ABL1-expressing cells regardless of BCR-ABL1 mutation status, compared to parental Ba/F3 cells. NT157 treatment (1.6 µM) for 48 hours reduced cell viability of Ba/F3 BCR-ABL1WT and BCR-ABL1T315I cells to 64% and 76%, respectively (p<0.05). Identical treatment with NT157 also significantly induced apoptosis as noted by the percentage of cells positive for annexinV/PI staining compared to vehicle in Ba/F3 BCR-ABL1WT and BCR-ABL1T315I cells (84 vs. 13% and 92 vs. 22%, respectively; p<0.05). Similar results were observed after 24 and 72 hours of NT157 treatment for both cell lines. More importantly, NT157 treatment reduced phosphorylation of STAT3 at both serine (S)727 and tyrosine (Y)705 in Ba/F3 BCR-ABL1T315I in the absence of IL3. Conclusion: Pharmacological inhibition of IRS1/2 decreases cell viability, increases apoptosis, and reduces STAT3 activation in cells expressing wild-type or T315I-mutant BCR-ABL1 in a time- and dose-dependent manner. These findings suggest that targeting of IRS1/2 alone or in combination with ABL1 TKIs may offer further improved treatment strategies and outcomes for maximizing control of disease resistance and persistence in patients with CML. Disclosures Druker: Agios: Honoraria; Ambit BioSciences: Consultancy; ARIAD: Patents & Royalties, Research Funding; Array: Patents & Royalties; AstraZeneca: Consultancy; Blueprint Medicines: Consultancy, Equity Ownership, Other: travel, accommodations, expenses; BMS: Research Funding; CTI: Equity Ownership; Curis: Patents & Royalties; Cylene: Consultancy, Equity Ownership; D3 Oncology Solutions: Consultancy; Gilead Sciences: Consultancy, Other: travel, accommodations, expenses ; Lorus: Consultancy, Equity Ownership; MolecularMD: Consultancy, Equity Ownership, Patents & Royalties; Novartis: Research Funding; Oncotide Pharmaceuticals: Research Funding; Pfizer: Patents & Royalties; Roche: Consultancy.


Bionatura ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 1725-1732
Author(s):  
Hamdah Alsaeedi ◽  
Rowaid Qahwaji ◽  
Talal Qadah

Kola nut extracts have recently been reported to contain chemopreventive compounds providing several pharmacological benefits. This study investigated Kola nut extracts' anti-cancer activity on human immortalized myelogenous leukemia cell line K562 through apoptosis and cell cycle arrest. Fresh Kola nuts were prepared as powder and dissolved in DMSO. Different concentrations (50, 100, 150, 200, and 250 μg/ml) of working solutions were prepared. The K562 cells were treated with the different concentrations of Kola nut extract or vehicle control (10% DMSO) followed by incubation at 37°C for 24, 48, and 72 hours, respectively. Treatment activity was investigated in K562 cells; by Resazurin, and FITC/Propidium Iodide and 7-AAD stained cells to evaluate apoptotic cells and the cell cycle's progression. Inhibition of leukemia cell proliferation was observed. The extract effectively induced cell death, early and late apoptosis by approximately 30% after 24 and 48 hours incubation, and an increase in the rate of dead cells by 50% was observed after 72 hours of incubation. Also, cell growth reduction was seen at high dose concentrations (150 and 200 µg/ml), as evident by cell count once treated with Kola nut extract. The total number of apoptotic cells increased from 5.8% of the control group to 27.4% at 250 µg/ml concentration. Moreover, Kola nut extracts' effects on K562 cells increased gradually in a dose and time-dependent manner. It was observed that Kola nut extracts could arrest the cell cycle in the G2/M phase as an increase in the number of cells by 29.8% and 14.6 % were observed from 9.8% and 5.2% after 24 and 48 hours of incubation, respectively. This increase was detected in a dose and time-dependent manner. Kola nut extracts can be used as a novel anti-cancer agent in Leukemia treatment as it has shown significant therapeutic potential and therefore provides new insights in understanding the mechanisms of its action. Keywords: Kola nut extracts, Leukemia, K562 cell line, Apoptosis, Cancer.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4219-4219 ◽  
Author(s):  
Shalini Singh ◽  
Doaa Ahmed ◽  
Hamid Dolatshad ◽  
Dharamveer Tatwavedi ◽  
Ulrike Schulze ◽  
...  

The myelodysplastic syndromes (MDS) are common myeloid malignancies. Mutations in genes involved in pre-mRNA splicing (SF3B1, SRSF2, U2AF1 and ZRSR2) are the most common mutations found in MDS. There is evidence that some spliceosomal components play a role in the maintenance of genomic stability. Splicing is a transcription coupled process; splicing factor mutations affect transcription and may lead to the accumulation of R-loops (RNA-DNA hybrids with a displaced single stranded DNA). Mutations in the splicing factors SRSF2 and U2AF1 have been recently shown to increase R-loops formation in leukemia cell lines, resulting in increased DNA damage, replication stress and activation of the ATR-Chk1 pathway. SF3B1 is the most frequently mutated splicing factor gene in MDS, but a role for mutated SF3B1 in R-loop accumulation and DNA damage has not yet been reported in hematopoietic cells. We have investigated the effects of the common SF3B1 K700E mutation on R-loop formation and DNA damage response in MDS and leukemia cells. R-loop signals and the DNA damage response were measured by immunofluorescence staining using S9.6 and anti-γ-H2AX antibodies respectively. Firstly, we studied K562 (myeloid leukemia) cells with the SF3B1 K700E mutation and isogenic SF3B1 K700K wildtype (WT) K562 cells. K562 cells with SF3B1 mutation showed a significant increase in the number of S9.6 foci [Fold change (FC) 2.01, p<0.001] and in the number of γ-H2AX foci (FC 2.32, p<0.001), indicating increased R-loops and DNA damage, compared to SF3B1 WT K562 cells. Moreover, we observed increased Chk1 phosphorylation at Ser345, a hallmark of activation of the ATR pathway, in SF3B1 mutant K562 cells. Next, we analyzed induced pluripotent stem cells (iPSCs) that we generated from the bone marrow cells of one SF3B1 mutant MDS patient and of one healthy control. A significant increase in R-loops and DNA damage response was observed in an iPSC clone harboring SF3B1 mutation compared to another iPSC clone without SF3B1 mutation obtained from same MDS patient (S9.6 mean fluorescence intensity - FC 1.72, p<0.001; γ-H2AX foci - FC 1.34, p=0.052) and to iPSCs from the healthy control (S9.6 mean fluorescence intensity - FC 1.53, p<0.001; γ-H2AX foci - FC 1.61, p=0.006). In addition, bone marrow CD34+ cells from a SF3B1 mutant MDS patient showed increased R-loops (as measured by number of S9.6 foci) compared to CD34+ cells from a MDS patient without splicing factor mutations (FC 1.9) and from a healthy control (FC 2.6). To investigate whether the observed DNA damage and ATR activation in SF3B1 mutant K562 cells result from induced R-loops, we overexpressed RNASEH1 (encoding an enzyme that degrades the RNA in RNA:DNA hybrids) to resolve R-loops in these cells. RNASEH1 overexpression significantly reduced the number of S9.6 (FC 0.51, p<0.001) and γ-H2AX foci (FC 0.63, p=0.035) in SF3B1 mutant K562 cells compared to SF3B1 WT K562 cells. RNASEH1 overexpression also resulted in decreased Chk1 phosphorylation, indicating suppression of ATR pathway activation in SF3B1 mutant K562 cells. To determine the functional importance of ATR activation associated with SF3B1 mutation, we evaluated the sensitivity of SF3B1 mutant cells towards the ATR inhibitor VE-821. SF3B1 mutant K562 cells showed preferential sensitivity towards VE-821 compared to SF3B1 WT K562 cells. Chk1 is a critical substrate of ATR, and we next investigated the effects of Chk1 inhibition in SF3B1 mutant cells. Interestingly, SF3B1 mutant K562 cells demonstrated preferential sensitivity towards the Chk1 inhibitor UCN-1 (IC50 61.8 nM) compared to SF3B1 WT K562 cells (IC50 267 nM), suggesting that ATR activation is important for the survival of SF3B1 mutant cells. SF3B1 mutant K562 cells were preferentially sensitive to the splicing modulator Sudemycin D6 (IC50 53.2 nM) compared to SF3B1 WT K562 cells (IC50 130.7 nM). The effects of VE-821 and UCN-1 on SF3B1 mutant K562 cells were enhanced by Sudemycin D6 (Combination index <1), indicating synergy. In summary, our results show that the SF3B1 mutation leads to accumulation of R-loops and associated DNA damage resulting in activation of the ATR pathway in MDS and leukemia cells. Thus different mutated splicing factors have convergent effects on R-loop elevation leading to DNA damage. Moreover, our data suggest that Chk1 inhibition, alone or in combination with splicing modulators, may represent a novel therapeutic strategy to target SF3B1 mutant cells. Disclosures Schuh: Janssen: Speakers Bureau; Verastem: Speakers Bureau; Kite: Speakers Bureau; Gilead: Speakers Bureau; Seattle Genetics: Speakers Bureau; Jazz Pharmaceuticals: Speakers Bureau; Bristol-Myers Squibb: Research Funding; AbbVie: Consultancy, Speakers Bureau; Genentech: Consultancy, Speakers Bureau; Pharmacyclics: Consultancy, Speakers Bureau. Wiseman:Novartis, Celgene: Consultancy, Honoraria.


Blood ◽  
1997 ◽  
Vol 89 (9) ◽  
pp. 3378-3384 ◽  
Author(s):  
Beatriz Bellosillo ◽  
Mireia Dalmau ◽  
Dolors Colomer ◽  
Joan Gil

Abstract B-chronic lymphocytic leukemia (B-CLL) is characterized by the accumulation of long-lived B lymphocytes that express high levels of Bcl-2. We examined the involvement of CED-3/ICE-like proteases in the apoptosis of B-CLL cells. One of the substrates of these proteases is poly(ADP [adenosine 5′-diphosphate]-ribose) polymerase (PARP). The effect of different factors that induce the apoptosis of B-CLL cells on the proteolytic cleavage of PARP has been studied. Treatment of B-CLL cells with different concentrations of dexamethasone (1 to 1,000 μmol/L) induced in a dose-dependent manner the cleavage of PARP. Dexamethasone induced PARP cleavage after 12 hours of incubation, which was almost complete at 48 hours. PARP cleavage during apoptosis of B-CLL cells was studied in cells from eight patients and a correlation was found between cell viability and the degree of PARP cleavage. Incubation in vitro of B-CLL cells with fludarabine for 48 hours induced PARP cleavage in all the cases studied. Protein kinase C (PKC) activation with 100 nmol/L TPA (12-O-tetradecanoylphorbol 13-acetate) or incubation with interleukin-4 (10 ng/mL) prevented either dexamethasone- or fludarabine-induced proteolysis of PARP. Incubation of B-CLL cells with the CED-3/ICE–like protease inhibitor Z-VAD.fmk inhibited spontaneous and dexamethasone-induced PARP cleavage and DNA fragmentation in a dose-dependent manner. Furthermore, Z-VAD.fmk prevented the cytotoxic effect of dexamethasone. These results indicate that CED-3/ICE–like proteases play an important role in the apoptosis of B-CLL cells.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2418-2418 ◽  
Author(s):  
Angela Hatter ◽  
Purva Bali ◽  
Maria Balasis ◽  
Warren Fiskus ◽  
Sandhya Boyapalle ◽  
...  

Abstract We have previously reported that agents that inhibit ATP binding and chaperone function of hsp90 are highly active against wild type and mutant Bcr-Abl and mutant FLT-3 containing human acute leukemia cells. In the present studies, we determined the effects of a more soluble and potent geldanamycin analogue, DMAG (Kosan Biosciences Inc.), and/or hydroxamate histone deacetylase inhibitor (HHDI), vorinostat (Merck & Co., Inc.), against human MCL Jeko1 and MO2058 cells. These cells contain the characteristic MCL-associated chromosomal translocation t(11; 14)(q13;q32), which results in the overexpression of cyclin D1. Recently, HHDIs, such as vorinostat, have been shown to inhibit HDAC6, which results in the acetylation of hsp90 and inhibition of its ATP binding and chaperone function. Treatment with vorinostat (0.5 to 2.0 μM) induced the accumulation of the cells in the G1 and DMAG (0.1 to 0.5 μM) in the G2/M phase of the cell cycle. Both agents induced apoptosis in a dose-dependent manner (up to 50%). While vorinostat induced both p21 and p27 levels, DMAG only increased the intracellular levels of p21. Treatment with either agent depleted the intracellular levels of c-Myc, c-Raf, Akt and cdk4 in a dose dependent manner. It is well established that the chaperone association with hsp90 maintains Akt, c-Raf, cyclin D1 and cdk4 in the native and active conformation, and inhibition of hsp90 promotes their polyubiquitylation and proteasomal degradation. Notably, co-treatment with DMAG (e.g., 0.25 μM) and vorinostat (e.g., 2.0 μM), more than either agent alone, markedly attenuated the levels of cyclin D1 and cdk4, as well as the levels of c-Myc, c-Raf and Akt. The combination of DMAG and vorinostat also induced significantly more apoptosis of Jeko1 and MO2058 cells, as compared to the treatment with either agent alone (p &lt; 0.01). These findings demonstrate that the combined treatment with vorinostat and DMAG is highly active against human MCL cells, and support the rationale to determine the in vivo efficacy and safety of the combination against human MCL.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1838-1838
Author(s):  
Muneyoshi Futami ◽  
Toshiyuki Hatano ◽  
Yasushi Soda ◽  
Seiichiro Kobayashi ◽  
Makoto Miyagishi ◽  
...  

Abstract In the majority of Philadelphia chromosome (Ph)-positive acute lymphoblastic leukemia (Ph-ALL) cases, the resulting BCR-ABL gene generates 190 kD active tyrosine kinase (p190) which is responsible for leukemogenesis and can be a molecular target for therapy. Although a series of ABL kinase inhibitors including imatinib, nilotinib and dasatinib reveal potent activities against Ph-ALL, acquired resistance caused by point mutations in the kinase domain such as T315I still remains to be overcome. That is why a novel strategy is desired in the treatment of Ph-ALL. We previously reported that lentiviral delivery of maxizyme targeting p190 specifically induced apoptosis of Ph-ALL cells (Blood 104:356, 2004). Since RNA interference proved to be a more powerful tool in selective gene silencing, we applied this technology to test whether specific and efficient killing of Ph-ALL cells could be achieved by down-regulation of p190. We designed a series of 21-mer and 27-mer small hairpin RNA (shRNA) targeting p190 mRNA and constructed plasmid vectors expressing these shRNA, which were screened by transfection of 293T/p190 cells to determine optimal target sites. As a result, three candidate sequences were identified; junctional 27-mer, junctional 21-mer and ABL 21-mer. Then, we inserted each of the shRNA expression cassettes into the lentiviral vector (HIV-U6/shRNA) and prepared high titer virus stock for infection of leukemia cells. shBCR-ABL/21, but not shBCR-ABL/27, induced significant and specific cell death of p190+ Ph-ALL cells in a time-dependent manner. shABL was more potent than shBCR-ABL/21 and also active against p210+ CML cells as well as 293 cells, but did not substantially affect Ph-negative leukemia cells. Both shABL and shBCR-ABL/21 completely inhibited growth of Ba/F3 cells harboring either wild-type or mutant p190 which renders those resistant to imatinib. Furthermore, both shRNA at low multiplicity of infection additively cooperated with imatinib in growth inhibition of Ba/F3-p190 cells. These data suggest that shRNA targeting p190 may become a therapeutic option in Ph-ALL by improvement of its delivery system like liposome. Growth of BA/F3-p190BCR-ABL Cells transduced with shRNA Targeting p190BCR-ABL Growth of BA/F3-p190BCR-ABL Cells transduced with shRNA Targeting p190BCR-ABL


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4241-4241
Author(s):  
Stefan H. Faderl ◽  
Quin Van ◽  
Patricia E. Koch ◽  
David M. Harris ◽  
Inbal Hallevi ◽  
...  

Abstract Novel immunochemotherapy regimens combined with imatinib mesylate (IA) have significantly improved treatment outcome of Ph+ ALL. Nevertheless, most adult patients with Ph+ ALL relapse and succumb to their disease. Recent reports suggested that Jak-2 is engaged in the signaling of Bcr-Abl in chronic myelogenous leukemia (CML) cells. Because Jak-2 inhibitory agents are currently investigated in clinical trials, we sought to explore the role of Jak-2 in the signaling of Bcr-Abl in Ph+ ALL assuming that inhibition of Jak-2 might be beneficial in the treatment of Ph+ ALL. To do this, we used our Ph+ (p190) ALL cell lines Z-119 and Z-181 (Estrov et al. J Cell Physiol166: 618, 1996). We chose these cells because in both lines Jak-2 can be activated. Both Z-119 and Z-181 cells express granulocyte-macrophage colony-stimulating factor (GM-CSF) receptors and GM-CSF activates Jak-2 and stimulates the proliferation of both cell lines. Using a clonogenic assay, we found that IA inhibited the proliferation of these cells at concentrations ranging from 50 to 500 nM. Because Bcr-Abl was found to activate the signal transducer and activator of transcription (STAT)-5 in CML cells, we used Western immunoblotting and found that IA inhibited the phosphorylation (p) of STAT5 in a dose-dependent manner in Ph+ ALL cells. To test whether JAk-2 plays a role in Bcr-Abl (p190) signaling we incubated Z-181 cells for 4 hours with or without 50, 100, 250, and 500 nM IA, extracted cellular protein and immunoprecipitated total STAT5 protein. Then, using Western immunoblotting we detected the Bcr-Abl p190 protein in all STAT5 immunoprecipitates and by using specific pSTAT5 antibodies, we demonstrated that IA induced a dose-dependent reduction in the levels of pSTAT5, but not of p190 protein, suggesting that the p190 Bcr-Abl kinase binds to and activates STAT5. Remarkably, neither Jak-2 nor pJak-2 was detected in either immunoprecipitate. To further delineate the role of Jak-2 in Bcr-Abl signaling we extracted protein from Z-181 cells and immunoprecipitated Jak-2. Neither Bcr-Abl nor STAT5 was detected in these immunoprecipitates, confirming that Jak-2 does not bind Bcr-Abl p190 protein and does not participate in the activation of STAT5. Taken together, our data suggest that Bcr-Abl (p190) binds and phosphorylates STAT5 whereas, Jak-2 is not engaged in Bcr-Abl (p190) signaling in Ph+ ALL cells.


Sign in / Sign up

Export Citation Format

Share Document