Age-related morphology and function of human arterial endothelial cells

2020 ◽  
Vol 74 (1) ◽  
pp. 93-107 ◽  
Author(s):  
S. Lau ◽  
R. Rangarajan ◽  
A. Krüger-Genge ◽  
S. Braune ◽  
J.-H. Küpper ◽  
...  
2007 ◽  
Vol 292 (3) ◽  
pp. H1373-H1389 ◽  
Author(s):  
Somshuvra Mukhopadhyay ◽  
Fang Xu ◽  
Pravin B. Sehgal

We previously reported the disruption of caveolae/rafts, dysfunction of Golgi tethers, N-ethylmaleimide-sensitive factor-attachment protein (SNAP) receptor proteins (SNAREs), and SNAPs, and inhibition of anterograde trafficking in endothelial cells in culture and rat lung exposed to monocrotaline pyrrole (MCTP) as a prelude to the development of pulmonary hypertension. We have now investigated 1) whether this trafficking block affects subcellular localization and function of endothelial nitric oxide (NO) synthase (eNOS) and 2) whether Golgi blockade and eNOS sequestration are observed after hypoxia and senescence. Immunofluorescence data revealed that MCTP-induced “megalocytosis” of pulmonary arterial endothelial cells (PAEC) was accompanied by a loss of eNOS from the plasma membrane, with increased accumulation in the cytoplasm. This cytoplasmic eNOS was sequestered in heterogeneous compartments and partially colocalized with Golgi and endoplasmic reticulum (ER) markers, caveolin-1, NOSTRIN, and ER Tracker, but not Lyso Tracker. Hypoxia and senescence also produced enlarged PAEC, with dysfunctional Golgi and loss of eNOS from the plasma membrane, with sequestration in the cytoplasm. Live-cell imaging of caveolar and cytoplasmic NO with 4,5-diaminofluorescein diacetate (DAF-2DA) as probe showed a marked loss of caveolar NO after MCTP, hypoxia, and senescence. Although ionomycin stimulated DAF-2DA fluorescence in control PAEC, this ionophore decreased DAF-2DA fluorescence in MCTP-treated and senescent PAEC, suggesting localization of eNOS in an aberrant cytoplasmic compartment that was readily discharged by Ca2+-induced exocytosis. Thus monocrotaline, hypoxia, and senescence produce a Golgi blockade in PAEC, leading to sequestration of eNOS away from its functional caveolar location and providing a mechanism for the often-reported reduction in pulmonary arterial NO levels in experimental pulmonary hypertension, despite sustained eNOS protein levels.


2021 ◽  
Author(s):  
Cellas A Hayes ◽  
Brandon G Ashmore ◽  
Akshaya Vijayasankar ◽  
Jessica P Marshall ◽  
Nicole M Ashpole

The age-related reduction in circulating levels of insulin-like growth factor-1 (IGF-1) is associated with increased risk of stroke and neurodegenerative diseases in advanced age. Numerous reports highlight behavioral and physiological deficits in blood-brain barrier function and neurovascular communication when IGF-1 levels are low. Administration of exogenous IGF- 1 reduces the extent of tissue damage and sensorimotor deficits in animal models of ischemic stroke, highlighting the critical role of IGF-1 as a regulator of neurovascular health. The beneficial effects of IGF-1 in the nervous system are often attributed to direct actions on neurons; however, glial cells and the cerebrovasculature are also modulated by IGF-1, and systemic reductions in circulating IGF-1 likely influence the viability and function of the entire neuro-glio-vascular unit. We recently observed that reduced IGF-1 led to impaired glutamate handling in astrocytes. Considering glutamate excitotoxicity is one of the main drivers of neurodegeneration following ischemic stroke, the age-related loss of IGF-1 may also compromise neural function indirectly by altering the function of supporting glia and vasculature. In this study, we assess and compare the effects of IGF-1 signaling on glutamate-induced toxicity and reactive oxygen species (ROS)-produced oxidative stress in primary neuron, astrocyte, and brain microvascular endothelial cell cultures. Our findings verify that neurons are highly susceptible to excitotoxicity, in comparison to astrocytes or endothelial cells, and that a prolonged reduction in IGFR activation increases the extent of toxicity. Moreover, prolonged IGFR inhibition increased the susceptibility of astrocytes to glutamate-induced toxicity and lessened their ability to protect neurons from excitotoxicity. Thus, IGF-1 promotes neuronal survival by acting directly on neurons and indirectly on astrocytes. Despite increased resistance to excitotoxic death, both astrocytes and cerebrovascular endothelial cells exhibit acute increases in glutamate-induced ROS production and mitochondrial dysfunction when IGFR is inhibited at the time of glutamate stimulation. Together these data highlight that each cell type within the neuro-glio-vascular unit differentially responds to stress when IGF-1 signaling was impaired. Therefore, the reductions in circulating IGF-1 observed in advanced age are likely detrimental to the health and function of the entire neuro-glio-vascular unit.


2021 ◽  
Vol 22 (20) ◽  
pp. 11097
Author(s):  
Ushashi Chand Dadwal ◽  
Fazal Ur Rehman Bhatti ◽  
Olatundun Dupe Awosanya ◽  
Caio de Andrade Staut ◽  
Rohit U. Nagaraj ◽  
...  

Angiogenesis is critical for successful fracture healing. Age-related alterations in endothelial cells (ECs) may cause impaired bone healing. Therefore, examining therapeutic treatments to improve angiogenesis in aging may enhance bone healing. Sirtuin 1 (SIRT1) is highly expressed in ECs and its activation is known to counteract aging. Here, we examined the effects of SRT1720 treatment (SIRT1 activator) on the growth and function of bone marrow and lung ECs (BMECs and LECs, respectively), derived from young (3-4 month) and old (20–24 month) mice. While aging did not alter EC proliferation, treatment with SRT1720 significantly increased proliferation of all LECs. However, SRT1720 only increased proliferation of old female BMECs. Vessel-like tube assays showed similar vessel-like structures between young and old LECs and BMECs from both male and female mice. SRT1720 significantly improved vessel-like structures in all LECs. No age, sex, or treatment differences were found in migration related parameters of LECs. In males, old BMECs had greater migration rates than young BMECs, whereas in females, old BMECs had lower migration rates than young BMECs. Collectively, our data suggest that treatment with SRT1720 appears to enhance the angiogenic potential of LECs irrespective of age or sex. However, its role in BMECs is sex- and age-dependent.


2021 ◽  
Vol 13 ◽  
Author(s):  
Cellas A. Hayes ◽  
Brandon G. Ashmore ◽  
Akshaya Vijayasankar ◽  
Jessica P. Marshall ◽  
Nicole M. Ashpole

The age-related reduction in circulating levels of insulin-like growth factor-1 (IGF-1) is associated with increased risk of stroke and neurodegenerative diseases in advanced age. Numerous reports highlight behavioral and physiological deficits in blood-brain barrier function and neurovascular communication when IGF-1 levels are low. Administration of exogenous IGF-1 reduces the extent of tissue damage and sensorimotor deficits in animal models of ischemic stroke, highlighting the critical role of IGF-1 as a regulator of neurovascular health. The beneficial effects of IGF-1 in the nervous system are often attributed to direct actions on neurons; however, glial cells and the cerebrovasculature are also modulated by IGF-1, and systemic reductions in circulating IGF-1 likely influence the viability and function of the entire neuro-glio-vascular unit. We recently observed that reduced IGF-1 led to impaired glutamate handling in astrocytes. Considering glutamate excitotoxicity is one of the main drivers of neurodegeneration following ischemic stroke, the age-related loss of IGF-1 may also compromise neural function indirectly by altering the function of supporting glia and vasculature. In this study, we assess and compare the effects of IGF-1 signaling on glutamate-induced toxicity and reactive oxygen species (ROS)-produced oxidative stress in primary neuron, astrocyte, and brain microvascular endothelial cell cultures. Our findings verify that neurons are highly susceptible to excitotoxicity, in comparison to astrocytes or endothelial cells, and that a prolonged reduction in IGFR activation increases the extent of toxicity. Moreover, prolonged IGFR inhibition increased the susceptibility of astrocytes to glutamate-induced toxicity and lessened their ability to protect neurons from excitotoxicity. Thus, IGF-1 promotes neuronal survival by acting directly on neurons and indirectly on astrocytes. Despite increased resistance to excitotoxic death, both astrocytes and cerebrovascular endothelial cells exhibit acute increases in glutamate-induced ROS production and mitochondrial dysfunction when IGFR is inhibited at the time of glutamate stimulation. Together these data highlight that each cell type within the neuro-glio-vascular unit differentially responds to stress when IGF-1 signaling was impaired. Therefore, the reductions in circulating IGF-1 observed in advanced age are likely detrimental to the health and function of the entire neuro-glio-vascular unit.


1995 ◽  
Vol 74 (02) ◽  
pp. 698-703 ◽  
Author(s):  
Catherine Lenich ◽  
Ralph Pannell ◽  
Victor Gurewich

SummaryFactor XII has long been implicated in the intrinsic pathway of fibrinolysis, but the mechanism by which it triggers plasminogen activation and targets fibrinolysis has not been established. In the present study, the assembly and function of activated Factor XII (F.XIIa), prourokinase (pro-u-PA), high molecular weight kininogen (H-kininogen), and prekallikrein on human umbilical vein endothelial cells (HUVEC) was investigated. 125I-prekallikrein was shown to bind to HUVEC via receptor-bound H-kininogen in the presence of 50 μM ZnCl2. After the addition of F.XIIa, 78% of the 125I-prekallikrein initially bound to HUVEC was converted to 125I-kallikrein. However, only 6% of the HUVEC-bound 125I-pro-u-PA was thereby activated. This discrepancy was shown to be related to rapid dissociation (>50% within 15 min) of prekallikrein/kallikrein, but not pro-u-PA, from HUVEC. Increasing the level of cell-bound kallikrein increased the portion of cell-bound pro-u-PA activated, indicating that their co-localization was important for this pathway. Finally, F.XIIa was shown to trigger plasminogen activation on HUVEC via this pathway. This assembly of reactants on the endothelium suggests a mechanism whereby local fibrinolysis may be triggered by blood coagulation.


1975 ◽  
Vol 34 (03) ◽  
pp. 825-839 ◽  
Author(s):  
Francois M Booyse ◽  
Bonnie J Sedlak ◽  
Max E Rafelson

SummaryArterial endothelial cells were obtained from bovine aortae by mild treatment with collagenase and medium perfusion. These cells were cultured in RPMI-1640 medium containing 15 mM Hepes buffer and 35% fetal calf serum at pH 7.35. Essentially ah (90–95%) the effluent cells were viable and 80% of these cells attached to the substratum within 1 hour. Small patches of attached cells coalesced to form confluent monolayers in 3–5 days. Confluent monolayers of endothelial cells consisted of a homogeneous population of tightly packed, polygonal cells. Selected cultures were serially subcultured (trypsin-EDTA) for 12–14 months (30–35 passages) without any apparent change in morphology or loss of growth characteristics. Primary and three-month old (15 passages) cultures had population doubling times of 32–34 hours and 29–31 hours, respectively. These cells (primary and subcultures) did not require a minimum cell number to become established in culture. Bovine endothelial cells (primary, first, fifth and thirteenth passages) were characterized ultrastructurally by the presence of Weibel-Palade bodies, pinocytotic vesicles and microfilaments and immunologically by the presence of thrombosthenin-like contractile proteins and Factor VIII antigen. The intercellular junctions of post-confluent cultures stained specifically with silver nitrate. From these data, we concluded that identifiable endothelial cells could be obtained from bovine aortae and cultured and maintained for prolonged periods of time.


2021 ◽  
Vol 22 (8) ◽  
pp. 3955
Author(s):  
László Bálint ◽  
Zoltán Jakus

Our understanding of the function and development of the lymphatic system is expanding rapidly due to the identification of specific molecular markers and the availability of novel genetic approaches. In connection, it has been demonstrated that mechanical forces contribute to the endothelial cell fate commitment and play a critical role in influencing lymphatic endothelial cell shape and alignment by promoting sprouting, development, maturation of the lymphatic network, and coordinating lymphatic valve morphogenesis and the stabilization of lymphatic valves. However, the mechanosignaling and mechanotransduction pathways involved in these processes are poorly understood. Here, we provide an overview of the impact of mechanical forces on lymphatics and summarize the current understanding of the molecular mechanisms involved in the mechanosensation and mechanotransduction by lymphatic endothelial cells. We also discuss how these mechanosensitive pathways affect endothelial cell fate and regulate lymphatic development and function. A better understanding of these mechanisms may provide a deeper insight into the pathophysiology of various diseases associated with impaired lymphatic function, such as lymphedema and may eventually lead to the discovery of novel therapeutic targets for these conditions.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Anastasiya Börsch ◽  
Daniel J. Ham ◽  
Nitish Mittal ◽  
Lionel A. Tintignac ◽  
Eugenia Migliavacca ◽  
...  

AbstractSarcopenia, the age-related loss of skeletal muscle mass and function, affects 5–13% of individuals aged over 60 years. While rodents are widely-used model organisms, which aspects of sarcopenia are recapitulated in different animal models is unknown. Here we generated a time series of phenotypic measurements and RNA sequencing data in mouse gastrocnemius muscle and analyzed them alongside analogous data from rats and humans. We found that rodents recapitulate mitochondrial changes observed in human sarcopenia, while inflammatory responses are conserved at pathway but not gene level. Perturbations in the extracellular matrix are shared by rats, while mice recapitulate changes in RNA processing and autophagy. We inferred transcription regulators of early and late transcriptome changes, which could be targeted therapeutically. Our study demonstrates that phenotypic measurements, such as muscle mass, are better indicators of muscle health than chronological age and should be considered when analyzing aging-related molecular data.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Rahul Basu ◽  
Vinod Nair ◽  
Clayton W. Winkler ◽  
Tyson A. Woods ◽  
Iain D. C. Fraser ◽  
...  

Abstract Background A key factor in the development of viral encephalitis is a virus crossing the blood-brain barrier (BBB). We have previously shown that age-related susceptibility of mice to the La Crosse virus (LACV), the leading cause of pediatric arbovirus encephalitis in the USA, was associated with the ability of the virus to cross the BBB. LACV infection in weanling mice (aged around 3 weeks) results in vascular leakage in the olfactory bulb/tract (OB/OT) region of the brain, which is not observed in adult mice aged > 6–8 weeks. Thus, we studied age-specific differences in the response of brain capillary endothelial cells (BCECs) to LACV infection. Methods To examine mechanisms of LACV-induced BBB breakdown and infection of the CNS, we analyzed BCECs directly isolated from weanling and adult mice as well as established a model where these cells were infected in vitro and cultured for a short period to determine susceptibility to virus infection and cell death. Additionally, we utilized correlative light electron microscopy (CLEM) to examine whether changes in cell morphology and function were also observed in BCECs in vivo. Results BCECs from weanling, but not adult mice, had detectable infection after several days in culture when taken ex vivo from infected mice suggesting that these cells could be infected in vitro. Further analysis of BCECs from uninfected mice, infected in vitro, showed that weanling BCECs were more susceptible to virus infection than adult BCECs, with higher levels of infected cells, released virus as well as cytopathic effects (CPE) and cell death. Although direct LACV infection is not detected in the weanling BCECs, CLEM analysis of brain tissue from weanling mice indicated that LACV infection induced significant cerebrovascular damage which allowed virus-sized particles to enter the brain parenchyma. Conclusions These findings indicate that BCECs isolated from adult and weanling mice have differential viral load, infectivity, and susceptibility to LACV. These age-related differences in susceptibility may strongly influence LACV-induced BBB leakage and neurovascular damage allowing virus invasion of the CNS and the development of neurological disease.


Sign in / Sign up

Export Citation Format

Share Document