scholarly journals A Simple Ensemble Learning Knowledge Distillation

Author(s):  
Himel Das Gupta ◽  
Kun Zhang ◽  
Victor S. Sheng

Deep neural network (DNN) has shown significant improvement in learning and generalizing different machine learning tasks over the years. But it comes with an expense of heavy computational power and memory requirements. We can see that machine learning applications are even running in portable devices like mobiles and embedded systems nowadays, which generally have limited resources regarding computational power and memory and thus can only run small machine learning models. However, smaller networks usually do not perform very well. In this paper, we have implemented a simple ensemble learning based knowledge distillation network to improve the accuracy of such small models. Our experimental results prove that the performance enhancement of smaller models can be achieved through distilling knowledge from a combination of small models rather than using a cumbersome model for the knowledge transfer. Besides, the ensemble knowledge distillation network is simpler, time-efficient, and easy to implement.

Author(s):  
Niall Rooney

The concept of ensemble learning has its origins in research from the late 1980s/early 1990s into combining a number of artificial neural networks (ANNs) models for regression tasks. Ensemble learning is now a widely deployed and researched topic within the area of machine learning and data mining. Ensemble learning, as a general definition, refers to the concept of being able to apply more than one learning model to a particular machine learning problem using some method of integration. The desired goal of course is that the ensemble as a unit will outperform any of its individual members for the given learning task. Ensemble learning has been extended to cover other learning tasks such as classification (refer to Kuncheva, 2004 for a detailed overview of this area), online learning (Fern & Givan, 2003) and clustering (Strehl & Ghosh, 2003). The focus of this article is to review ensemble learning with respect to regression, where by regression, we refer to the supervised learning task of creating a model that relates a continuous output variable to a vector of input variables.


2021 ◽  
Author(s):  
Racheal S. Akinbo ◽  
Oladunni A. Daramola

The employment of machine learning algorithms in disease classification has evolved as a precision medicine for scientific innovation. The geometric growth in various machine learning systems has paved the way for more research in the medical imaging process. This research aims to promote the development of machine learning algorithms for the classification of medical images. Automated classification of medical images is a fascinating application of machine learning and they have the possibility of higher predictability and accuracy. The technological advancement in the processing of medical imaging will help to reduce the complexities of diseases and some existing constraints will be greatly minimized. This research exposes the main ensemble learning techniques as it covers the theoretical background of machine learning, applications, comparison of machine learning and deep learning, ensemble learning with reviews of state-of the art literature, framework, and analysis. The work extends to medical image types, applications, benefits, and operations. We proposed the application of the ensemble machine learning approach in the classification of medical images for better performance and accuracy. The integration of advanced technology in clinical imaging will help in the prompt classification, prediction, early detection, and a better interpretation of medical images, this will, in turn, improves the quality of life and expands the clinical bearing for machine learning applications.


Quantum machine learning is the combination of quantum computing and classical machine learning. It helps in solving the problems of one field to another field. Quantum computational power can be advantageous in handling huge data at a faster rate.In this regard, quantum computational power can be advantageous in handling such huge data at a faster rate. Classical machine learning is about trying to find patterns in data and using those patterns to predict future events. Quantum systems, on the other hand, produces typical patterns which are not producible by classical systems, thereby postulating that quantum computers may overtake classical computers on machine learning tasks. Hence the whole motivation in this work is on understanding and analysing the half adder and full adder circuit design using Quantum mechanics.


Author(s):  
Tausifa Jan Saleem ◽  
Mohammad Ahsan Chishti

The rapid progress in domains like machine learning, and big data has created plenty of opportunities in data-driven applications particularly healthcare. Incorporating machine intelligence in healthcare can result in breakthroughs like precise disease diagnosis, novel methods of treatment, remote healthcare monitoring, drug discovery, and curtailment in healthcare costs. The implementation of machine intelligence algorithms on the massive healthcare datasets is computationally expensive. However, consequential progress in computational power during recent years has facilitated the deployment of machine intelligence algorithms in healthcare applications. Motivated to explore these applications, this paper presents a review of research works dedicated to the implementation of machine learning on healthcare datasets. The studies that were conducted have been categorized into following groups (a) disease diagnosis and detection, (b) disease risk prediction, (c) health monitoring, (d) healthcare related discoveries, and (e) epidemic outbreak prediction. The objective of the research is to help the researchers in this field to get a comprehensive overview of the machine learning applications in healthcare. Apart from revealing the potential of machine learning in healthcare, this paper will serve as a motivation to foster advanced research in the domain of machine intelligence-driven healthcare.


Author(s):  
Ivan Herreros

This chapter discusses basic concepts from control theory and machine learning to facilitate a formal understanding of animal learning and motor control. It first distinguishes between feedback and feed-forward control strategies, and later introduces the classification of machine learning applications into supervised, unsupervised, and reinforcement learning problems. Next, it links these concepts with their counterparts in the domain of the psychology of animal learning, highlighting the analogies between supervised learning and classical conditioning, reinforcement learning and operant conditioning, and between unsupervised and perceptual learning. Additionally, it interprets innate and acquired actions from the standpoint of feedback vs anticipatory and adaptive control. Finally, it argues how this framework of translating knowledge between formal and biological disciplines can serve us to not only structure and advance our understanding of brain function but also enrich engineering solutions at the level of robot learning and control with insights coming from biology.


2021 ◽  
Vol 3 (2) ◽  
pp. 392-413
Author(s):  
Stefan Studer ◽  
Thanh Binh Bui ◽  
Christian Drescher ◽  
Alexander Hanuschkin ◽  
Ludwig Winkler ◽  
...  

Machine learning is an established and frequently used technique in industry and academia, but a standard process model to improve success and efficiency of machine learning applications is still missing. Project organizations and machine learning practitioners face manifold challenges and risks when developing machine learning applications and have a need for guidance to meet business expectations. This paper therefore proposes a process model for the development of machine learning applications, covering six phases from defining the scope to maintaining the deployed machine learning application. Business and data understanding are executed simultaneously in the first phase, as both have considerable impact on the feasibility of the project. The next phases are comprised of data preparation, modeling, evaluation, and deployment. Special focus is applied to the last phase, as a model running in changing real-time environments requires close monitoring and maintenance to reduce the risk of performance degradation over time. With each task of the process, this work proposes quality assurance methodology that is suitable to address challenges in machine learning development that are identified in the form of risks. The methodology is drawn from practical experience and scientific literature, and has proven to be general and stable. The process model expands on CRISP-DM, a data mining process model that enjoys strong industry support, but fails to address machine learning specific tasks. The presented work proposes an industry- and application-neutral process model tailored for machine learning applications with a focus on technical tasks for quality assurance.


2021 ◽  
Vol 11 (1) ◽  
pp. 32
Author(s):  
Oliwia Koteluk ◽  
Adrian Wartecki ◽  
Sylwia Mazurek ◽  
Iga Kołodziejczak ◽  
Andrzej Mackiewicz

With an increased number of medical data generated every day, there is a strong need for reliable, automated evaluation tools. With high hopes and expectations, machine learning has the potential to revolutionize many fields of medicine, helping to make faster and more correct decisions and improving current standards of treatment. Today, machines can analyze, learn, communicate, and understand processed data and are used in health care increasingly. This review explains different models and the general process of machine learning and training the algorithms. Furthermore, it summarizes the most useful machine learning applications and tools in different branches of medicine and health care (radiology, pathology, pharmacology, infectious diseases, personalized decision making, and many others). The review also addresses the futuristic prospects and threats of applying artificial intelligence as an advanced, automated medicine tool.


Sign in / Sign up

Export Citation Format

Share Document