Chapter 2. Symbolic Reasoning in Latent Space: Classical Planning as an Example

2021 ◽  
Author(s):  
Masataro Asai ◽  
Hiroshi Kajino ◽  
Alex Fukunaga ◽  
Christian Muise

Symbolic systems require hand-coded symbolic representation as input, resulting in a knowledge acquisition bottleneck. Meanwhile, although deep learning has achieved significant success in many fields, the knowledge is encoded in a subsymbolic representation which is incompatible with symbolic systems. To address the gap between the two fields, one has to solve Symbol Grounding problem: The question of how a machine can generate symbols automatically. We discuss our recent work called Latplan, an unsupervised architecture combining deep learning and classical planning. Given only an unlabeled set of image pairs showing a subset of transitions allowed in the environment (training inputs), Latplan learns a complete propositional PDDL action model of the environment. Later, when a pair of images representing the initial and the goal states (planning inputs) is given, Latplan finds a plan to the goal state in a symbolic latent space and returns a visualized plan execution. We discuss several key ideas that made Latplan possible which would hopefully extend to many other symbolic paradigms outside classical planning.

Author(s):  
Angelo Loula ◽  
João Queiroz

The topic of representation acquisition, manipulation and use has been a major trend in Artificial Intelligence since its beginning and persists as an important matter in current research. Particularly, due to initial focus on development of symbolic systems, this topic is usually related to research in symbol grounding by artificial intelligent systems. Symbolic systems, as proposed by Newell & Simon (1976), are characterized as a highlevel cognition system in which symbols are seen as “[lying] at the root of intelligent action” (Newell and Simon, 1976, p.83). Moreover, they stated the Physical Symbol Systems Hypothesis (PSSH), making the strong claim that “a physical symbol system has the necessary and sufficient means for general intelligent action” (p.87). This hypothesis, therefore, sets equivalence between symbol systems and intelligent action, in such a way that every intelligent action would be originated in a symbol system and every symbol system is capable of intelligent action. The symbol system described by Newell and Simon (1976) is seen as a computer program capable of manipulating entities called symbols, ‘physical patterns’ combined in expressions, which can be created, modified or destroyed by syntactic processes. Two main capabilities of symbol systems were said to provide the system with the properties of closure and completeness, and so the system itself could be built upon symbols alone (Newell & Simon, 1976). These capabilities were designation – expressions designate objects – and interpretation – expressions could be processed by the system. The question was, and much of the criticism about symbol systems came from it, how these systems, built upon and manipulating just symbols, could designate something outside its domain. Symbol systems lack ‘intentionality’, stated John Searle (1980), in an important essay in which he described a widely known mental experiment (Gedankenexperiment), the ‘Chinese Room Argument’. In this experiment, Searle places himself in a room where he is given correlation rules that permits him to determine answers in Chinese to question also in Chinese given to him, although Searle as the interpreter knows no Chinese. To an outside observer (who understands Chinese), the man in this room understands Chinese quite well, even though he is actually manipulating non-interpreted symbols using formal rules. For an outside observer the symbols in the questions and answers do represent something, but for the man in the room the symbols lack intentionality. The man in the room acts like a symbol system, which relies only in symbolic structures manipulation by formal rules. For such systems, the manipulated tokens are not about anything, and so they cannot even be regarded as representations. The only intentionality that can be attributed to these symbols belongs to who ever uses the system, sending inputs that represent something to them and interpreting the output that comes out of the system. (Searle, 1980) Therefore, intentionality is the important feature missing in symbol systems. The concept of intentionality is of aboutness, a “feature of certain mental states by which they are directed at or about objects and states of affairs in the world” (Searle, 1980), as a thought being about a certain place.1 Searle (1980) points out that a ‘program’ itself can not achieve intentionality, because programs involve formal relations and intentionality depends on causal relations. Along these lines, Searle leaves a possibility to overcome the limitations of mere programs: ‘machines’ – physical systems causally connected to the world and having ‘causal internal powers’ – could reproduce the necessary causality, an approach in the same direction of situated and embodied cognitive science and robotics. It is important to notice that these ‘machines’ should not be just robots controlled by a symbol system as described before. If the input does not come from a keyboard and output goes to a monitor, but rather came in from a video camera and then out to motors, it would not make a difference since the symbol system is not aware of this change. And still in this case, the robot would not have intentional states (Searle 1980). Symbol systems should not depend on formal rules only, if symbols are to represent something to the system. This issue brought in another question, how symbols could be connected to what they represent, or, as stated by Harnad (1990) defining the Symbol Grounding Problem: “How can the semantic interpretation of a formal symbol system be made intrinsic to the system, rather than just parasitic on the meanings in our heads? How can the meanings of the meaningless symbol tokens, manipulated solely on the basis of their (arbitrary) shapes, be grounded in anything but other meaningless symbols?” The Symbol Grounding Problem, therefore, reinforces two important matters. First that symbols do not represent anything to a system, at least not what they were said to ‘designate’. Only someone operating the system could recognize those symbols as referring to entities outside the system. Second, the symbol system cannot hold its closure in relating symbols only with other symbols; something else should be necessary to establish a connection between symbols and what they represent. An analogy made by Harnad (1990) is with someone who knows no Chinese but tries to learn Chinese from a Chinese/Chinese dictionary. Since terms are defined by using other terms and none of them is known before, the person is kept in a ‘dictionary-goround’ without ever understanding those symbols. The great challenge for Artificial Intelligence researchers then is to connect symbols to what they represent, and also to identify the consequences that the implementation of such connection would make to a symbol system, e.g. much of the descriptions of symbols by means of other symbols would be unnecessary when descriptions through grounding are available. It is important to notice that the grounding process is not just about giving sensors to an artificial system so it would be able to ‘see’ the world, since it ‘trivializes’ the symbol grounding problem and ignores the important issue about how the connection between symbols and objects are established (Harnad, 1990).


2020 ◽  
Vol 2020 (14) ◽  
pp. 379-1-379-6
Author(s):  
Shuang Zhang ◽  
Ada Zhen ◽  
Robert L. Stevenson

Recent work in image deblurring aided by inertial sensor data has shown promise. Separate work has also shown that deep learning techniques are useful for the image deblurring problem. Due to a lack of a proper dataset, however, deep learning techniques have not yet to be successfully applied to image deblurring when inertial sensor data is also available. This paper proposes to generate a synthetic training and testing dataset that includes groundtruth and blurry image pairs as well as inertial sensor data recorded during the exposure time of each blurry image. To simulate the real situations, the proposed dataset called DeblurIMUDataset considers synchronization issue, rotation center shift, rolling shutter effect as well as inertial sensor data noise and image noise. This dataset is available online.


BioChem ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 36-48
Author(s):  
Ivan Jacobs ◽  
Manolis Maragoudakis

Computer-assisted de novo design of natural product mimetics offers a viable strategy to reduce synthetic efforts and obtain natural-product-inspired bioactive small molecules, but suffers from several limitations. Deep learning techniques can help address these shortcomings. We propose the generation of synthetic molecule structures that optimizes the binding affinity to a target. To achieve this, we leverage important advancements in deep learning. Our approach generalizes to systems beyond the source system and achieves the generation of complete structures that optimize the binding to a target unseen during training. Translating the input sub-systems into the latent space permits the ability to search for similar structures, and the sampling from the latent space for generation.


Algorithms ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 39
Author(s):  
Carlos Lassance ◽  
Vincent Gripon ◽  
Antonio Ortega

Deep Learning (DL) has attracted a lot of attention for its ability to reach state-of-the-art performance in many machine learning tasks. The core principle of DL methods consists of training composite architectures in an end-to-end fashion, where inputs are associated with outputs trained to optimize an objective function. Because of their compositional nature, DL architectures naturally exhibit several intermediate representations of the inputs, which belong to so-called latent spaces. When treated individually, these intermediate representations are most of the time unconstrained during the learning process, as it is unclear which properties should be favored. However, when processing a batch of inputs concurrently, the corresponding set of intermediate representations exhibit relations (what we call a geometry) on which desired properties can be sought. In this work, we show that it is possible to introduce constraints on these latent geometries to address various problems. In more detail, we propose to represent geometries by constructing similarity graphs from the intermediate representations obtained when processing a batch of inputs. By constraining these Latent Geometry Graphs (LGGs), we address the three following problems: (i) reproducing the behavior of a teacher architecture is achieved by mimicking its geometry, (ii) designing efficient embeddings for classification is achieved by targeting specific geometries, and (iii) robustness to deviations on inputs is achieved via enforcing smooth variation of geometry between consecutive latent spaces. Using standard vision benchmarks, we demonstrate the ability of the proposed geometry-based methods in solving the considered problems.


Author(s):  
Trung Minh Nguyen ◽  
Thien Huu Nguyen

The previous work for event extraction has mainly focused on the predictions for event triggers and argument roles, treating entity mentions as being provided by human annotators. This is unrealistic as entity mentions are usually predicted by some existing toolkits whose errors might be propagated to the event trigger and argument role recognition. Few of the recent work has addressed this problem by jointly predicting entity mentions, event triggers and arguments. However, such work is limited to using discrete engineering features to represent contextual information for the individual tasks and their interactions. In this work, we propose a novel model to jointly perform predictions for entity mentions, event triggers and arguments based on the shared hidden representations from deep learning. The experiments demonstrate the benefits of the proposed method, leading to the state-of-the-art performance for event extraction.


2021 ◽  
Author(s):  
Florian Eichin ◽  
Maren Hackenberg ◽  
Caroline Broichhagen ◽  
Antje Kilias ◽  
Jan Schmoranzer ◽  
...  

Live imaging techniques, such as two-photon imaging, promise novel insights into cellular activity patterns at a high spatial and temporal resolution. While current deep learning approaches typically focus on specific supervised tasks in the analysis of such data, e.g., learning a segmentation mask as a basis for subsequent signal extraction steps, we investigate how unsupervised generative deep learning can be adapted to obtain interpretable models directly at the level of the video frames. Specifically, we consider variational autoencoders for models that infer a compressed representation of the data in a low-dimensional latent space, allowing for insight into what has been learned. Based on this approach, we illustrate how structural knowledge can be incorporated into the model architecture to improve model fitting and interpretability. Besides standard convolutional neural network components, we propose an architecture for separately encoding the foreground and background of live imaging data. We exemplify the proposed approach with two-photon imaging data from hippocampal CA1 neurons in mice, where we can disentangle the neural activity of interest from the neuropil background signal. Subsequently, we illustrate how to impose smoothness constraints onto the latent space for leveraging knowledge about gradual temporal changes. As a starting point for adaptation to similar live imaging applications, we provide a Jupyter notebook with code for exploration. Taken together, our results illustrate how architecture choices for deep generative models, such as for spatial structure, foreground vs. background, and gradual temporal changes, facilitate a modeling approach that combines the flexibility of deep learning with the benefits of incorporating domain knowledge. Such a strategy is seen to enable interpretable, purely image-based models of activity signals from live imaging, such as for two-photon data.


2021 ◽  
Author(s):  
Van Bettauer ◽  
Anna CBP Costa ◽  
Raha Parvizi Omran ◽  
Samira Massahi ◽  
Eftyhios Kirbizakis ◽  
...  

We present deep learning-based approaches for exploring the complex array of morphologies exhibited by the opportunistic human pathogen C. albicans. Our system entitled Candescence automatically detects C. albicans cells from Differential Image Contrast microscopy, and labels each detected cell with one of nine vegetative, mating-competent or filamentous morphologies. The software is based upon a fully convolutional one-stage object detector and exploits a novel cumulative curriculum-based learning strategy that stratifies our images by difficulty from simple vegetative forms to more complex filamentous architectures. Candescence achieves very good performance on this difficult learning set which has substantial intermixing between the predicted classes. To capture the essence of each C. albicans morphology, we develop models using generative adversarial networks and identify subcomponents of the latent space which control technical variables, developmental trajectories or morphological switches. We envision Candescence as a community meeting point for quantitative explorations of C. albicans morphology.


Sign in / Sign up

Export Citation Format

Share Document