An economical method of determining added mass and damping coefficients of axisymmetric floating bodies in oscillatory heaving motion

1980 ◽  
Vol 27 (313) ◽  
pp. 231-240 ◽  
Author(s):  
V. Ferdinande ◽  
B.G. Kritis
Author(s):  
Alessio Pistidda ◽  
Harald Ottens ◽  
Richard Zoontjes

During offshore installation operations, floating bodies are often moored using soft mooring which are designed to withstand the environmental forces. Large amplitude motions often occur due to excitation by slowly varying wind and wave drift forces. To analyze these motions the dynamic system has to be accurately described, which includes an estimation of the added mass and damping coefficients. In general, the added mass can be accurately calculated with traditional potential theory. However for the damping this method is not adequate because viscous effects play an important role. Generally these data are obtained using model tests. This paper validates the CFD methodology as an alternative to model tests to evaluate the viscous damping. The aim is to define a standard procedure to derive viscous damping coefficients for surge, sway and yaw motion of floating bodies. To estimate viscous damping in CFD, a 3D model of the launch and float-over barge H-851 was used. For this barge, model test data is available which could be compared with the results of the CFD analysis. For the simulations, the commercial package STAR-CCM+ with the implicit unsteady solver for Reynolds-Averaged Navier-Stokes (RANS) equations was used. The turbulence model implemented was the k-Omega-SST. Numerical errors have been assessed performing sensitivity analysis on time step and grid size. Damping has been investigated by performing decay simulations as in the model tests, taking the effect of coupling among all motions into account. The P-Q fitting method has been used to determine the linear and quadratic component of the damping. Numerical results are validated with those obtained from the towing tank. Results show that CFD is an adequate tool to estimate the low frequency damping in terms of equivalent damping. More investigations are required to determine the linear and quadratic component.


1990 ◽  
Vol 34 (03) ◽  
pp. 172-178
Author(s):  
Marc Vantorre

A general nonlinear theory for solving the radiation problem for floating or immersed bodies in a periodic heave motion, composed of a number of harmonic components, is applied for calculating the influence of draft variations on the linear hydrodynamic coefficients for heave. It is shown that a calculation method for added-mass and damping coefficients of axisymmetric bodies based on a boundary integral equation method can easily be modified to obtain numerical values of the first and second derivatives with respect to draft of the hydrodynamic coefficients as well. The method is illustrated by experimental and numerical data for a floating cone.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 822
Author(s):  
Yury Stepanyants ◽  
Izolda Sturova

This paper presents the calculation of the hydrodynamic forces exerted on an oscillating circular cylinder when it moves perpendicular to its axis in infinitely deep water covered by compressed ice. The cylinder can oscillate both horizontally and vertically in the course of its translational motion. In the linear approximation, a solution is found for the steady wave motion generated by the cylinder within the hydrodynamic set of equations for the incompressible ideal fluid. It is shown that, depending on the rate of ice compression, both normal and anomalous dispersion can occur in the system. In the latter case, the group velocity can be opposite to the phase velocity in a certain range of wavenumbers. The dependences of the hydrodynamic loads exerted on the cylinder (the added mass, damping coefficients, wave resistance and lift force) on the translational velocity and frequency of oscillation were studied. It was shown that there is a possibility of the appearance of negative values for the damping coefficients at the relatively big cylinder velocity; then, the wave resistance decreases with the increase in cylinder velocity. The theoretical results were underpinned by the numerical calculations for the real parameters of ice and cylinder motion.


Author(s):  
Chris D. Kulhanek ◽  
Dara W. Childs

Static and rotordynamic coefficients are measured for a rocker-pivot, tilting-pad journal bearing (TPJB) with 50 and 60% offset pads in a load-between-pad (LBP) configuration. The bearing uses leading-edge-groove direct lubrication and has the following characteristics: 5-pads, 101.6 mm (4.0 in) nominal diameter,0.0814 -0.0837 mm (0.0032–0.0033 in) radial bearing clearance, 0.25 to 0.27 preload, and 60.325 mm (2.375 in) axial pad length. Tests were performed on a floating bearing test rig with unit loads from 0 to 3101 kPa (450 psi) and speeds from 7 to 16 krpm. Dynamic tests were conducted over a range of frequencies (20 to 320 Hz) to obtain complex dynamic stiffness coefficients as functions of excitation frequency. For most test conditions, the real dynamic stiffness functions were well fitted with a quadratic function with respect to frequency. This curve fit allowed for the stiffness frequency dependency to be captured by including an added mass matrix [M] to a conventional [K][C] model, yielding a frequency independent [K][C][M] model. The imaginary dynamic stiffness coefficients increased linearly with frequency, producing frequency-independent direct damping coefficients. Direct stiffness coefficients were larger for the 60% offset bearing at light unit loads. At high loads, the 50% offset configuration had a larger stiffness in the loaded direction, while the unloaded direct stiffness was approximately the same for both pivot offsets. Cross-coupled stiffness coefficients were positive and significantly smaller than direct stiffness coefficients. Negative direct added-mass coefficients were obtained for both offsets, especially in the unloaded direction. Cross-coupled added-mass coefficients are generally positive and of the same sign. Direct damping coefficients were mostly independent of load and speed, showing no appreciable difference between pivot offsets. Cross-coupled damping coefficients had the same sign and were much smaller than direct coefficients. Measured static eccentricities suggested cross coupling stiffness exists for both pivot offsets, agreeing with dynamic measurements. Static stiffness measurements showed good agreement with the loaded, direct dynamic stiffness coefficients.


1989 ◽  
Vol 33 (02) ◽  
pp. 84-92
Author(s):  
G. X. Wu ◽  
R. Eatock Taylor

The problem of wave radiation and diffraction by submerged spheroids is analyzed using linearized three-dimensional potential-flow theory. The solution is obtained by expanding the velocity potential into a series of Legendre functions in a spheroidal coordinate system. Tabulated and graphical results are provided for added mass and damping coefficients of various spheroids undergoing motions in six degrees of freedom. Graphs are also provided for exciting forces and moments corresponding to a range of incoming wave angles.


1970 ◽  
Vol 14 (04) ◽  
pp. 317-328 ◽  
Author(s):  
E. O. Tuck

The problem discussed concerns small motions of a ship, in all six degrees of freedom, but at zero speed of advance, due to an incident wave system in shallow water of depth comparable with the ship's draft. The problem is completely formulated for an arbitrary ship, and is partially solved for the case when the ship is slender and the wavelength much greater than the water depth. Sample numerical computations of heave, pitch, and sway added mass and damping coefficients and the sway exciting force are presented.


1981 ◽  
Vol 25 (01) ◽  
pp. 44-61
Author(s):  
C. H. Kim ◽  
S. Tsakonas

The analysis presents a practical method for evaluating the added-mass and damping coefficients of a heaving surface-effect ship in uniform translation. The theoretical added-mass and damping coefficients and the heave response show fair agreement with the corresponding experimental values. Comparisons of the coupled aero-hydrodynamic and uncoupled analytical results with the experimental data prove that the uncoupled theory, dominant for a long time, that neglects the free-surface effects is an oversimplified procedure. The analysis also provides means of estimating the wave elevation of the free surface, the escape area at the stern and the volume which are induced by a heaving surface-effect ship in uniform translation in otherwise calm water. Computational procedures have been programmed in the FORTRAN IV language and adapted to the PDP-10 high-speed digital computer.


2003 ◽  
Vol 2003 (57) ◽  
pp. 3643-3656 ◽  
Author(s):  
Dambaru D. Bhatta

We derived added mass and damping coefficients of a vertical floating circular cylinder due to surge motion in calm water of finite depth. This is done by deriving the velocity potential for the cylinder by considering two regions, namely, interior region and exterior region. The velocity potentials for these two regions are obtained by the method of separation of variables. The continuity of the solutions has been maintained at the imaginary interface of these regions by matching the functions and gradients of each solution. The complex matrix equation is numerically solved to determine the unknown coefficients. Some computational results are presented for different depth-to-radius and draft-to-radius ratios.


1987 ◽  
Vol 109 (3) ◽  
pp. 283-288 ◽  
Author(s):  
R. Chilukuri

Added mass and fluid damping coefficients for vibrations of an inner cylinder that is enclosed by a concentric outer cylinder are determined by finite element analysis of the unsteady, laminar, incompressible flow in the annulus. Continuously deforming space-time finite elements are used to track the moving cylinder and the changing shape of the space domain. For small cylinder vibration amplitudes, the present results agree well with the work of earlier investigators who solved the linearized Navier-Stokes equations on a fixed mesh. Fluid damping coefficients are shown to increase with vibration amplitude. Added mass coefficients may either increase or decrease with increasing vibration amplitude.


Sign in / Sign up

Export Citation Format

Share Document