Calpain-Mediated Alterations in Astrocytes Before and During Amyloid Chaos in Alzheimer’s Disease

2021 ◽  
pp. 1-16
Author(s):  
Bruna Schultz ◽  
Jéssica Taday ◽  
Leonardo Menezes ◽  
Anderson Cigerce ◽  
Marina C. Leite ◽  
...  

One of the changes found in the brain in Alzheimer’s disease (AD) is increased calpain, derived from calcium dysregulation, oxidative stress, and/or neuroinflammation, which are all assumed to be basic pillars in neurodegenerative diseases. The role of calpain in synaptic plasticity, neuronal death, and AD has been discussed in some reviews. However, astrocytic calpain changes sometimes appear to be secondary and consequent to neuronal damage in AD. Herein, we explore the possibility of calpain-mediated astroglial reactivity in AD, both preceding and during the amyloid phase. We discuss the types of brain calpains but focus the review on calpains 1 and 2 and some important targets in astrocytes. We address the signaling involved in controlling calpain expression, mainly involving p38/mitogen-activated protein kinase and calcineurin, as well as how calpain regulates the expression of proteins involved in astroglial reactivity through calcineurin and cyclin-dependent kinase 5. Throughout the text, we have tried to provide evidence of the connection between the alterations caused by calpain and the metabolic changes associated with AD. In addition, we discuss the possibility that calpain mediates amyloid-β clearance in astrocytes, as opposed to amyloid-β accumulation in neurons.

2021 ◽  
Vol 36 ◽  
pp. 153331752110128
Author(s):  
Hana Na ◽  
Hua Tian ◽  
Zhengrong Zhang ◽  
Qiang Li ◽  
Jack B. Yang ◽  
...  

Intraperitoneal injection of amylin or its analog reduces Alzheimer’s disease (AD) pathology in the brains. However, self-injecting amylin analogs is difficult for patients due to cognitive deficits. This work aims to study the effects of amylin on the brain could be achieved by oral delivery as some study reported that amylin receptor may be present in the gastrointestinal tract. A 6-week course of oral amylin treatment reduced components of AD pathology, including the levels of amyloid-β, phosphorylated tau, and ionized calcium binding adaptor molecule 1. The treatment reduced active forms of cyclin-dependent kinase 5. Oral amylin treatment led to improvements in social deficit in AD mouse. Using immunofluorescence, we observed the amylin receptor complexed with the calcitonin receptor and receptor activity-modifying proteins in the enteric neurons. The study suggests the potential of the oral delivery of amylin analogs for the treatment of AD and other neurodegenerative diseases through enteric neurons.


Neurosignals ◽  
2002 ◽  
Vol 11 (5) ◽  
pp. 270-281 ◽  
Author(s):  
Xiongwei Zhu ◽  
Hyoung-gon Lee ◽  
Arun K. Raina ◽  
George Perry ◽  
Mark A. Smith

2011 ◽  
Vol 63 (5) ◽  
pp. 1270-1271
Author(s):  
A. Czapski Grzegorz ◽  
Gąssowska Magdalena ◽  
Songin Martyna ◽  
B. Strosznajder Joanna

2020 ◽  
Vol 17 (1) ◽  
pp. 29-43 ◽  
Author(s):  
Patrick Süß ◽  
Johannes C.M. Schlachetzki

: Alzheimer’s Disease (AD) is the most frequent neurodegenerative disorder. Although proteinaceous aggregates of extracellular Amyloid-β (Aβ) and intracellular hyperphosphorylated microtubule- associated tau have long been identified as characteristic neuropathological hallmarks of AD, a disease- modifying therapy against these targets has not been successful. An emerging concept is that microglia, the innate immune cells of the brain, are major players in AD pathogenesis. Microglia are longlived tissue-resident professional phagocytes that survey and rapidly respond to changes in their microenvironment. Subpopulations of microglia cluster around Aβ plaques and adopt a transcriptomic signature specifically linked to neurodegeneration. A plethora of molecules and pathways associated with microglia function and dysfunction has been identified as important players in mediating neurodegeneration. However, whether microglia exert either beneficial or detrimental effects in AD pathology may depend on the disease stage. : In this review, we summarize the current knowledge about the stage-dependent role of microglia in AD, including recent insights from genetic and gene expression profiling studies as well as novel imaging techniques focusing on microglia in human AD pathology and AD mouse models.


2014 ◽  
Vol 42 (5) ◽  
pp. 1321-1325 ◽  
Author(s):  
Emma C. Phillips ◽  
Cara L. Croft ◽  
Ksenia Kurbatskaya ◽  
Michael J. O’Neill ◽  
Michael L. Hutton ◽  
...  

Increased production of amyloid β-peptide (Aβ) and altered processing of tau in Alzheimer's disease (AD) are associated with synaptic dysfunction, neuronal death and cognitive and behavioural deficits. Neuroinflammation is also a prominent feature of AD brain and considerable evidence indicates that inflammatory events play a significant role in modulating the progression of AD. The role of microglia in AD inflammation has long been acknowledged. Substantial evidence now demonstrates that astrocyte-mediated inflammatory responses also influence pathology development, synapse health and neurodegeneration in AD. Several anti-inflammatory therapies targeting astrocytes show significant benefit in models of disease, particularly with respect to tau-associated neurodegeneration. However, the effectiveness of these approaches is complex, since modulating inflammatory pathways often has opposing effects on the development of tau and amyloid pathology, and is dependent on the precise phenotype and activities of astrocytes in different cellular environments. An increased understanding of interactions between astrocytes and neurons under different conditions is required for the development of safe and effective astrocyte-based therapies for AD and related neurodegenerative diseases.


2014 ◽  
Vol 204 (6) ◽  
pp. 891-900 ◽  
Author(s):  
Ibtissem Nabti ◽  
Petros Marangos ◽  
Jenny Bormann ◽  
Nobuaki R. Kudo ◽  
John Carroll

Female meiosis is driven by the activities of two major kinases, cyclin-dependent kinase 1 (Cdk1) and mitogen-activated protein kinase (MAPK). To date, the role of MAPK in control of meiosis is thought to be restricted to maintaining metaphase II arrest through stabilizing Cdk1 activity. In this paper, we find that MAPK and Cdk1 play compensatory roles to suppress the anaphase-promoting complex/cyclosome (APC/C) activity early in prometaphase, thereby allowing accumulation of APC/C substrates essential for meiosis I. Furthermore, inhibition of MAPK around the onset of APC/C activity at the transition from meiosis I to meiosis II led to accelerated completion of meiosis I and an increase in aneuploidy at metaphase II. These effects appear to be mediated via a Cdk1/MAPK-dependent stabilization of the spindle assembly checkpoint, which when inhibited leads to increased APC/C activity. These findings demonstrate new roles for MAPK in the regulation of meiosis in mammalian oocytes.


Sign in / Sign up

Export Citation Format

Share Document