Analytical layout optimization of printed planar coil with variable trace width for inductive wireless power transfer

Author(s):  
Yuhua Cheng ◽  
Wenyu Kang ◽  
Gaofeng Wang ◽  
Maysam Ghovanloo ◽  
Wenjun Li

In the inductive wireless power transmission (WPT) designs of consumer electronics and implantable devices, the printed planar coil in standard manufacture is commonly used. Layout optimization of the coils is one of the important ways to make the power transmission system more efficient. Varying the trace width and turn-to-turn spacing together for the coils is proposed to optimize the maximum achievable power transfer efficiency (𝜂max). An accurate analytical model for the printed square coils is also established as well to speed up the design process. By virtue of this model, an optimal scaling factor of the trace width and the optimal frequency can be quickly estimated. The proposed model is validated by both the simulations (ANSYS HFSS) and experiments. A WPT link of two planar coils with size of 50 mm × 50 mm × 1 mm, operating at 23 MHz, is optimized by using this methodology. After optimization, the measured 𝜂max of the WPT system is increased from 22.60% to 32.74% at a 100-mm transmission distance.


Author(s):  
Anurag Saxena ◽  
Paras Raizada ◽  
Lok Prakash Gautam ◽  
Bharat Bhushan Khare

Wireless power transmission is the transmission of electrical energy without using any conductor or wire. It is useful to transfer electrical energy to those places where it is hard to transmit energy using conventional wires. In this chapter, the authors designed and implemented a wireless power transfer system using the basics of radio frequency energy harvesting. Numerical data are presented for power transfer efficiency of rectenna. From the simulated results, it is clear that the anticipated antenna has single band having resonant frequency 2.1 GHz. The anticipated antenna has impedance bandwidth of 62.29% for single band. The rectenna has maximum efficiency of 60% at 2.1 GHz. The maximum voltage obtained by DC-DC converter is 4V at resonant frequency.



Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 419
Author(s):  
Win-Jet Luo ◽  
C. Bambang Dwi Kuncoro ◽  
Yean-Der Kuan

Since the portability feature has been introduced in headphone development, this device now uses a battery as the main built-in power. However, the battery has limited power capacity and a short lifetime. Battery substitution and a conventional battery charger method is an ineffective, inflexible inconvenience for enhancing the user experience. This paper presents an innovative portable audio device battery built-in charger method based on wireless power technology. The developed charging device is composed of a headphone hanger pad for the wireless headphone and a charging pad for the portable wireless audio device battery charging. Circular flat spiral air-core coil was designed and evaluated using a numerical method to obtain optimal vertical magnetic field distribution based on the proposed evaluation criteria. A coil has inner coil diameter of 25 mm, outer coil diameter of 47.8 mm, wire diameter of 0.643 mm, the pitch of 0.03 mm and a number of turns of 17 was chosen to be implemented on the transmitter coil. A magnetic induction technique was adopted in the proposed wireless power transmission module which was implemented using commercial off-the-shelf components. For experimental and validation purposes, a developed receiver module applied to the commercial wireless headphone and portable audio speaker have a built-in battery capacity at 3.7 V 300 mAh. The experimental results show that the wireless power hanger pad prototype can transfer a 5 V induction voltage at a maximum current of 1000 mA, and the power transfer efficiency is around 70%. It works at 110 kHz of operation frequency with a maximum transmission distance of about 10 mm and takes 1 h to charge fully one 3.7 V 300 mAh polymer lithium battery.



Signals ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 209-229
Author(s):  
Mohammad Haerinia ◽  
Reem Shadid

Wireless power transmission (WPT) is a critical technology that provides an alternative for wireless power and communication with implantable medical devices (IMDs). This article provides a study concentrating on popular WPT techniques for IMDs including inductive coupling, microwave, ultrasound, and hybrid wireless power transmission (HWPT) systems. Moreover, an overview of the major works is analyzed with a comparison of the symmetric and asymmetric design elements, operating frequency, distance, efficiency, and harvested power. In general, with respect to the operating frequency, it is concluded that the ultrasound-based and inductive-based WPTs have a low operating frequency of less than 50 MHz, whereas the microwave-based WPT works at a higher frequency. Moreover, it can be seen that most of the implanted receiver’s dimension is less than 30 mm for all the WPT-based methods. Furthermore, the HWPT system has a larger receiver size compared to the other methods used. In terms of efficiency, the maximum power transfer efficiency is conducted via inductive-based WPT at 95%, compared to the achievable frequencies of 78%, 50%, and 17% for microwave-based, ultrasound-based, and hybrid WPT, respectively. In general, the inductive coupling tactic is mostly employed for transmission of energy to neuro-stimulators, and the ultrasonic method is used for deep-seated implants.



2020 ◽  
Vol 11 (2) ◽  
pp. 33
Author(s):  
Young Jin Hwang ◽  
Jong Myung Kim

This paper presents a novel inductive link for wireless power transfer (WPT) system of electric vehicles (EVs). The WPT technology uses an alternating magnetic field to transfer electric power through space. The use of the WPT technology for charging electric vehicle provides an excellent alternative to the existing plug-in charging technology. It has been reported that the inductive link using planar coils such as the circular and rectangular coil are capable of transferring a high power with high efficiency. However, they have a poor tolerance for lateral misalignment, thus their power transfer efficiency decreases significantly with the misalignment. Due to the poor misalignment performance of the planar coil topology, extensive studies have been carried out on the flux pipe topology due to their excellent misalignment tolerance. To address this, in this paper, a novel inductive link using double helix flux pipe topology is proposed. The performances of the inductive link using the proposed double helix flux pipe are analyzed and compared with inductive links using conventional flux pipe. The proposed model has excellent characteristics in terms of the power transfer efficiency and tolerance against misalignments. The proposed model is capable of transferring over 1.6 kW of power with a coil-to-coil efficiency of over 98.5% at a load resistance of 20 Ω.



Author(s):  
Masood Rehman ◽  
Zuhairi Baharudin ◽  
Perumal Nallagownden ◽  
Badar Ul Islam

<p>Wireless power transfer (WPT) system has got significant attention in recent years due to its applications in consumer electronics, medical implants and electric vehicles etc. WPT is a promising choice in situations, where the physical connectors can be unreliable and susceptible to failure. The efficiency of WPT system decreasing rapidly with increasing air-gap. Many circuit topologies have been employed to enhance the efficiency of the WPT system. This paper presents the modelling and performance analysis of resonant wireless power transfer (RWPT) system using series-parallel-mixed topology. The power transfer efficiency analysis of the model is investigated via circuit theory. S-parameters have been used for measuring power transfer efficiency. Transient analysis is performed to realize the behavior of voltage and current waveforms using advanced design system (ADS) software. The proposed model is tested with two amplitudes i.e. 100 V peak-to-peak and 110 V peak-to-peak at the same frequency of 365.1 kHz. The overall result shows that the series-parallel-mixed topology model has higher efficiency at low coupling factor (K) for both voltage amplitudes.</p>



2018 ◽  
Vol 6 (1) ◽  
pp. 17-25 ◽  
Author(s):  
Stasiu Chyczewski ◽  
Seahee Hwangbo ◽  
Yong-Kyu Yoon ◽  
David P. Arnold

This article experimentally explores the use of ferrite cores to miniaturize the receivers used for inductive wireless power transmission. A variety of receivers were designed and fabricated using cylindrical ferrite cores, ranging in total size from 47 to 687 mm3. The receivers were tested with a commercially available transmitter operating under the Rezence (Air Fuel Alliance) standard at 6.78 MHz. Experiments measured performance of the receivers in terms of their maximum power draw and efficiency as functions of the receiver load and transmission distance. Experimental results showed that ferrite-core receivers could draw multiple watts of power with end-to-end efficiencies in excess of 50%. While the efficiencies are less than a commercially planar coil receiver, the ferrite-core receivers offer a >50% reduction in mass and >90% reduction in footprint. As a result, the receiver power densities reach up to 17.6 W/cm3, which is a 25× improvement over previously reported work. This effort confirms the viability of ferrite-core receivers for size- and weight-constrained applications.



Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1348
Author(s):  
Yingqin Zeng ◽  
Conghui Lu ◽  
Cancan Rong ◽  
Xiong Tao ◽  
Xiaobo Liu ◽  
...  

In a wireless power transfer (WPT) system, the power transfer efficiency (PTE) decreases sharply with the increase in transfer distance. Metamaterials (MMs) have shown great potential to enhance PTE in mid-range WPT systems. In this paper, we propose two MM slabs of a 3 × 3 array to enhance the magnetic coupling. The MM unit cell was designed by using square spiral patterns on a thin printed circuit board (PCB). Moreover, the asymmetric four-coil WPT system was designed and built based on the practical application scenario of wireless charging for unmanned devices. The simulation and experimental results show that two MM slabs can enhance power transmission capability better than one MM slab. By optimizing the position and spacing of two MM slabs, the PTE was significantly improved at a mid-range distance. The measured PTEs of a system with two MM slabs can reach 72.05%, 64.33% and 49.63% at transfer distances of 80, 100 and 120 cm. When the transfer distance is 100 cm, the PTE of a system with MMs is 33.83% higher than that without MMs. Furthermore, the receiving and load coils were integrated, and the effect of coil offset on PTE was studied.



Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2159 ◽  
Author(s):  
Zhaohong Ye ◽  
Yue Sun ◽  
Xiufang Liu ◽  
Peiyue Wang ◽  
Chunsen Tang ◽  
...  

In order to implement the omnidirectional wireless power transfer (WPT), a novel three-phase-shifted drive omnidirectional WPT system is proposed. This system is comprised of three independent phase-adjusted excitation sources, three orthogonal transmitting coils, and one planar receiving coil. Based on the mutual coupling theory, the power transfer efficiency is derived and the corresponding control mechanism for maximizing this efficiency is presented. This control mechanism only depends on the currents’ root-mean-square (RMS) values of the three transmitting coils and simple calculations after each location and/or posture change of the receiving coil, which provides the real-time possibility to design an omnidirectional WPT system comparing with the other omnidirectional systems. In aid of computer emulation technique, the efficiency characteristic versus the omnidirectional location and posture of the receiving coil is analyzed, and the analytical results verify the validity of the control mechanism. Lastly, a hardware prototype has been set up, and its omnidirectional power transmission capacity has been successfully verified. The experimental results show that the wireless power is omnidirectional and it can be effectively transmitted to a load even though its receiving coil moves and/or rotates in a 3-D energy region.



2016 ◽  
Vol 3 (2) ◽  
pp. 83-92 ◽  
Author(s):  
Elisenda Bou-Balust ◽  
Raymond Sedwick ◽  
Peter Fisher ◽  
Eduard Alarcon

Resonant Inductive Coupling Wireless Power Transfer (RIC-WPT)is a key technology to provide an efficient wireless power channel to consumer electronics, biomedical implants and wireless sensor networks. Due to its non radiative nature, RIC Wireless Power Transfer has been considered safe for humans when adhered to magnetic health radiation safety regulations (Christ et al., 2013), unveiling a large range of potential applications in which this technology could be used. However, current deployments are limited to point-to-point links and do not explore the capabilities of Multi-Node RIC-WPT Systems. In such a system, the multi-path relaying effect between different nodes could effectively improve the performance of the link in terms of power transferred to the load and power transfer efficiency. However, depending on the impedance and resonant frequency of the nodes that generate the multi-path effect, these nodes could also act as interfering objects, therefore (a) making the transmitter and/or receiver act as a pass-band filter and (b) losing part of the transmitter magnetic field through coupling to the interfering node. In this paper, a circuit-based analytical model that predicts the behavior of a Multi-Node Resonant Inductive Coupling link is proposed and used to perform a design-space exploration of the multi-path relaying effect in RIC Wireless Power Transfer Systems.



Sign in / Sign up

Export Citation Format

Share Document