Performance study on newly developed AC magnetic suspension system using magnetic resonance coupling

2020 ◽  
Vol 64 (1-4) ◽  
pp. 779-787
Author(s):  
Arifur Rahman ◽  
Takeshi Mizuno ◽  
Yuji Ishino ◽  
Masaya Takasaki ◽  
Daisuke Yamaguchi

A newly developed AC magnetic suspension system is designed and fabricated to investigate the performances. A new concept of design is revealed for operating the apparatus differentially where the floator is kept at a constant position despite changing the parameters of the upper stator electromagnets. An extensive finite element analysis is conducted to estimate the basic characteristics of the system. A permanent magnet is incorporated in this system to reduce the required supply energy to the stator electromagnets. Magnetic suspension with a maximum gap of 2.0 mm without any control with the upper electromagnet in cumulative coupling mode and with a gap of 3.0 mm with indirect damping in the differentially operated mode is achieved. The indirect damping is achieved by applying PD control to the stator. The individual force, current and phase for variable frequency and gap between primary and secondary electromagnet are measured to examine the basic characteristics and performances.

2018 ◽  
Vol 84 (861) ◽  
pp. 17-00523-17-00523
Author(s):  
Yoshinori NARISAWA ◽  
Takeshi MIZUNO ◽  
Masaya TAKASAKI ◽  
Yuji ISHINO ◽  
Masayuki HARA ◽  
...  

2020 ◽  
Vol 64 (1-4) ◽  
pp. 977-983
Author(s):  
Koichi Oka ◽  
Kentaro Yamamoto ◽  
Akinori Harada

This paper proposes a new type of noncontact magnetic suspension system using two permanent magnets driven by rotary actuators. The paper aims to explain the proposed concept, configuration of the suspension system, and basic analyses for feasibility by FEM analyses. Two bar-shaped permanent magnets are installed as they are driven by rotary actuators independently. Attractive forces of two magnets act on the iron ball which is located under the magnets. Control of the angles of two magnets can suspend the iron ball stably without mechanical contact and changes the position of the ball. FEM analyses have been carried out for the arrangement of two permanent magnets and forces are simulated for noncontact suspension. Hence, successfully the required enough force against the gravity of the iron ball can be generated and controlled. Control of the horizontal force is also confirmed by the rotation of the permanent magnets.


2011 ◽  
Vol 5 (6) ◽  
pp. 1226-1237
Author(s):  
Kazuya NISHIMURA ◽  
Takeshi MIZUNO ◽  
Yuji ISHINO ◽  
Masaya TAKASAKI ◽  
Yasuhiro SAKAI

Sign in / Sign up

Export Citation Format

Share Document