Design of SLM automatic leveling powder laying mechanism and variable position powder laying movement strategy

Author(s):  
Yongdi Zhang ◽  
Guang Yang ◽  
Deming Wang ◽  
Haonan Wang

Additive Manufacturing technology has aroused widespread attention for free designing and rapid prototyping. Selective Laser Melting technology is one of the metal additive manufacturing technologies, and it has become an important choice for precision manufacturing of metal parts with high performance and complex shape. In the process of selective laser melting, the accuracy and efficiency of laying powders directly affect the quality and time of parts printing. In order to realize laying powder accurately and efficiently in printing process, the mechanical mechanism and movement strategy of the powder laying device are studied in this paper. A powder laying mechanism with automatic leveling function is designed. On the premise of ensuring the powder laying accuracy, a variable position powder laying movement strategy is proposed to improve the powder laying efficiency The case analysis results show that the laying powder efficiency has been increased by 49.2%.

2019 ◽  
Vol 818 ◽  
pp. 72-76 ◽  
Author(s):  
Konda Gokuldoss Prashanth ◽  
Sergio Scudino

Laser based powder bed fusion (LBPF) or selective laser melting (SLM) is making a leap march towards fabricating novel materials with improved functionalities. An attempt has been made here to fabricate hard quasicrystalline composites via SLM, which demonstrates that the process parameters can be used to vary the phases in the composites. The mechanical properties of the composite depend on their constituents and hence can be varied by varying the process parameters. The results show that SLM not only produces parts with improved functionalities and complex shape but also leads to defined phases and tunable properties.


2020 ◽  
Vol 35 (15) ◽  
pp. 1922-1935 ◽  
Author(s):  
Yangping Dong ◽  
Yulong Li ◽  
Thomas Ebel ◽  
Ming Yan

Abstract


2014 ◽  
Vol 627 ◽  
pp. 125-128 ◽  
Author(s):  
Marco Simonelli ◽  
Y.Y. Tse ◽  
C. Tuck

Selective laser melting (SLM) is an attractive metal additive manufacturing technique that can create functional finished components. The microstructure that originates from SLM, however, differs in many aspects from that obtained from conventional manufacturing. In addition, the microstructure-mechanical properties relationship is not yet fully understood. In this research, the high-cycle fatigue performance of SLM Ti-6Al-4V was studied. The dominant fracture mechanisms were reported and discussed in relation to the microstructure of the specimens.


2021 ◽  
Vol 316 ◽  
pp. 564-569
Author(s):  
P.A. Lykov ◽  
L.A. Glebov

Selective laser melting (SLM) is one of the additive manufacturing technologies that allows us to produce complex shape metallic objects from powder feedstock. Al-alloys are very promising materials in selective laser melting. In this paper, atomized metal powders of various aluminum alloys are investigated: 1) deformable alloys АК4, АК6; 2) cast alloys АК9ph, АК12; 3) deformable hardened alloy D16. As a part of the work, the particle shape, particle size distribution and technical characteristics of the powders were investigated, and also the compliance of materials with the requirements of additive technologies (SLM) was determined.


2018 ◽  
Vol 284 ◽  
pp. 667-672
Author(s):  
P.A. Lykov ◽  
R.M. Baitimerov

Additive manufacturing (AM) technologies make it possible to produce complex shape metallic objects from powder feedstock. AlSi12 alloy is one of the most widely used materials in selective laser melting (SLM). The large number of technological parameters involved complicate the selection of an SLM mode for obtaining a product with the required structure. The goal of this research was to determine the mode which ensures the material’s low porosity. Nine specimens were fabricated by using different SLM process parameters. The fabricated specimens have different microstructures. The lowest porosity that was achieved is about 0.5%.


2015 ◽  
Vol 105 (11-12) ◽  
pp. 793-797
Author(s):  
J. C. Aurich ◽  
M. Burkhart

Additive Manufacturing (AM) ist der Überbegriff für unterschiedliche Fertigungsverfahren, welche durch das schichtweise Aufbringen von Werkstoff die Herstellung von Bauteilen ermöglichen. Selective Laser Melting (SLM) ist ein additives Fertigungsverfahren zur Herstellung von Produkten mit hoher Detailgenauigkeit und Designfreiheit. Der Fachbeitrag stellt ein Konzept vor, bei dem durch systematisches Vorgehen untersucht wird, ob Produktanforderungen mit SLM besser erfüllt werden können als mit konventionellen Fertigungsverfahren.   Additive Manufacturing (AM) is the term for various manufacturing technologies that enable manufacturing of components by adding layer after layer of material. Selective Laser Melting (SLM) is an additive manufacturing technology that allows to manufacture products with high accuracy and design freedom. In this article an approach is presented to systematically examine, if product requirements can be fulfilled better with SLM than with conventional manufacturing technologies.


Author(s):  
M Silva ◽  
A Mateus ◽  
D Oliveira ◽  
C Malça

The demand for additive processes that provide components with high technological performance became overriding regardless of the application area. For medical applications, the orthopedics field—multimaterial orthoses and splints—can clearly benefit from direct additive manufacturing using a hybrid process instead of the traditional handmade manufacturing, which is slow, expensive, inaccurate, and difficult to reproduce. The ability to provide faster better orthoses, using innovative services and technologies, resulting in lower recovery times, reduced symptoms, and improved functional capacity, result in a significant impact on quality of life and the well-being of citizens. With these purposes, this work presents an integrate methodology, that includes the tridimensional (3D) scanning, 3D computer-aided design modeling, and the direct digital manufacturing of multimaterial orthoses and splints. Nevertheless, additive manufacturing of components with functional gradients, multimaterial components, e.g. metal/plastic is a great challenge since the processing factors for each one of them are very different. This paper proposes the addition of two advanced additive manufacturing technologies, the selective laser melting and the stereolithography, enabling the production of a photopolymerization of the polymer in the voids of a 3D metal mesh previously produced by selective laser melting. Based on biomimetic structures concept, this mesh is subject to a previous design optimization procedure in order to optimize its geometry, minimizing the mass involved and evidencing increased mechanical strength among other characteristics. A prototype of a hybrid additive manufacturing device was developed and its flexibility of construction, geometrical freedom, and different materials processability is demonstrated through the case study—arm orthosis—presented in this work.


Sign in / Sign up

Export Citation Format

Share Document