Characteristics of Powders from Different Aluminum Alloys for Additive Technologies Obtained by Gas Atomization

2021 ◽  
Vol 316 ◽  
pp. 564-569
Author(s):  
P.A. Lykov ◽  
L.A. Glebov

Selective laser melting (SLM) is one of the additive manufacturing technologies that allows us to produce complex shape metallic objects from powder feedstock. Al-alloys are very promising materials in selective laser melting. In this paper, atomized metal powders of various aluminum alloys are investigated: 1) deformable alloys АК4, АК6; 2) cast alloys АК9ph, АК12; 3) deformable hardened alloy D16. As a part of the work, the particle shape, particle size distribution and technical characteristics of the powders were investigated, and also the compliance of materials with the requirements of additive technologies (SLM) was determined.

Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3269 ◽  
Author(s):  
Marina Samodurova ◽  
Ivan Logachev ◽  
Nataliya Shaburova ◽  
Olga Samoilova ◽  
Liudmila Radionova ◽  
...  

Titanium alloy product manufacturing is traditionally considered to be a rather difficult task. Additive manufacturing technologies, which have recently become quite widespread, can ensure the manufacture of titanium alloys products of an arbitrary geometrical shape. During this study, we have developed a methodology for manufacturing titanium alloys products using additive technologies on FL-Clad-R-4 complex of laser melting of metals by combined Selective Laser Melting (SLM) and Direct Metal Deposition (DMD) methods. Ti–6Al–4V and Ti–6Al–4Mo–1V alloys were used for the manufacture of samples. We studied the microstructure of the obtained details and measured the microhardness of the samples. We discovered a gradient of the structure throughout the height of the details walls, which is connected with the peculiarities of thermal cycles of the technology used. This affected the microhardness values: in the upper part of the details, the microhardness is 10–25% higher (about 500 HV) than in the lower part (about 400 HV). Products made according to the developed technique do not have visible defects and pores. The obtained results indicate the competitiveness of the proposed methodology.


Author(s):  
Yongdi Zhang ◽  
Guang Yang ◽  
Deming Wang ◽  
Haonan Wang

Additive Manufacturing technology has aroused widespread attention for free designing and rapid prototyping. Selective Laser Melting technology is one of the metal additive manufacturing technologies, and it has become an important choice for precision manufacturing of metal parts with high performance and complex shape. In the process of selective laser melting, the accuracy and efficiency of laying powders directly affect the quality and time of parts printing. In order to realize laying powder accurately and efficiently in printing process, the mechanical mechanism and movement strategy of the powder laying device are studied in this paper. A powder laying mechanism with automatic leveling function is designed. On the premise of ensuring the powder laying accuracy, a variable position powder laying movement strategy is proposed to improve the powder laying efficiency The case analysis results show that the laying powder efficiency has been increased by 49.2%.


2021 ◽  
Vol 1040 ◽  
pp. 172-177
Author(s):  
Liana Yu. Saubanova ◽  
Semen V. Diachenko ◽  
Valeriya S. Loray ◽  
Liubov A. Nefedova ◽  
Sergey P. Bogdanov ◽  
...  

Powders of X6CrNiTi18-10 stainless steel were fabricated from original workpieces of different grade by gas atomization method. It was found that it is necessary to use argon as a gas for gas atomization of X6CrNiTi18-10 steel, since the use of nitrogen leads to the formation of its compounds, namely, titanium nitride. It is shown that all used workpieces – electric arc, electric slag and vacuum arc refinement – allow one to obtain powders suitable for further utilization in selective laser melting technology of 3D printing. The main physicochemical and technological properties of the obtained powders have been investigated. Changes in the chemical composition and quality of the powders are not significant within the X6CrNiTi18-10 grade. The 0...20 μm fraction of powders does not have fluidity, and thus cannot be used for additive technologies. The fraction 20...63 μm have suitable rheological properties for additive technologies and may be used in selective laser melting (SLM) process. The yield of target fraction 20 ... 63 microns was ≈45%. The fraction 63...120 μm may be used for the direct metal deposition (DMD) additive technology. Considering the economic aspect of the technology, it is preferable to use original workpieces of X6CrNiTi18-10 steel produced by electric arc or electroslag process, since the market price of vacuum arc steel is significantly higher. The fraction of ferrite phase in the powder increases with a decrease of particle size of the resulting powder and is lower comparing to the original workpiece. In the future, for a detailed study of the technological properties, it is planned to grow samples from each type of the obtained powders on installation for selective laser melting and direct laser deposition to determine the physical and mechanical properties of fabricated samples (tensile and impact bending tests) and carry out metallographic studies.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 234
Author(s):  
Jakob Kraner ◽  
Jožef Medved ◽  
Matjaž Godec ◽  
Irena Paulin

Additive manufacturing is a form of powder metallurgy, which means the properties of the initial metal powders (chemical composition, powder morphology and size) impact the final properties of the resulting parts. A complete characterization, including thermodynamic effects and the behavior of the metal powders at elevated temperatures, is crucial when planning the manufacturing process. The analysis of the Fe-Mn and Fe-Mn-Ag powder mixtures, made from pure elemental powders, shows a high susceptibility to sintering in the temperature interval from 700 to 1000 °C. Here, numerous changes to the manganese oxides and the αMn to βMn transformation occurred. The problems of mechanically mixed powders, when using selective laser melting, were highlighted by the low flowability, which led to a less controllable process, an uncontrolled arrangement of the powder and a large percentage of burnt manganese. All this was determined from the altered chemical compositions of the produced parts. The impact of the increased manganese content on the decreased probability of the transformation from γ-austenite to ε-martensite was confirmed. The ε-martensite in the microstructure increased the hardness of the material, but at the same time, its magnetic properties reduce the usefulness for medical applications. However, the produced parts had comparable elongations to human bone.


Author(s):  
Christian Felber ◽  
Florian Rödl ◽  
Ferdinand Haider

Abstract The most promising metal processing additive manufacturing technique in industry is selective laser melting, but only a few alloys are commercially available, limiting the potential of this technique. In particular high strength aluminum alloys, which are of great importance in the automotive industry, are missing. An aluminum 2024 alloy, reinforced by Ti-6Al-4V and B4C particles, could be used as a high strength alternative for aluminum alloys. Heat treating can be used to improve the mechanical properties of the metal matrix composite. Dynamic scanning calorimetry shows the formation of Al2Cu precipitates in the matrix instead of the expected Al2CuMg phases due to the loss of magnesium during printing, and precipitation processes are accelerated due to particle reinforcement and additive manufacturing. Strong reactions between aluminum and Ti-6Al-4V are observed in the microstructure, while B4C shows no reaction with the matrix or the titanium. The material shows high hardness, high stiffness, and low ductility through precipitation and particle reinforcement.


2021 ◽  
Vol 346 ◽  
pp. 01010
Author(s):  
Dmitry Efremov ◽  
Alla Gerasimova ◽  
Nikita Kislykh ◽  
Cristina Shaibel

The paper presents the results of studying the possibility of using the selective laser melting method for production of permanent magnets. This process allows to manufacture not only product models and prototypes, but also finished functional products by adding material layer by layer and bonding particles and layers to each other. We have considered the application areas of selective laser melting (SLM) based on powders obtained by different methods for the study. In addition, we have analyzed the traditional magnetic alloy casting technology, studied magnetic materials, and compared the powder magnet properties with standard data. We have found that the parameters of powders obtained by gas atomization are qualitatively superior to those of powders obtained using other methods, whereas the resulting magnets meet the requirements for magnets. Based on the 25Kh15KA alloy powder atomized by gas atomization, a SLM plant allows to manufacture permanent magnets with a material density of 7.59–7.55 g/cu.cm, which meets the requirements recommended by the State Standard GOST 24897-81, and to obtain the magnet properties that can be achieved using traditional metallurgical technologies.


2019 ◽  
Vol 946 ◽  
pp. 978-983 ◽  
Author(s):  
R.M. Baitimerov

Selective laser melting (SLM) is an additive manufacturing technology that allows to produce functional parts with extremely complex shape from metal powder feedstock. 240 single tracks with the length of 10 mm were fabricated using different SLM process parameters: laser power output, powder layer thickness, point distance and exposure time. Obtained single tracks were measured using optical microscopy. An influence of SLM process parameters on geometrical characteristics of obtained single tracks was investigated.


Author(s):  
Mohammad Masoomi ◽  
Xiang Gao ◽  
Scott M. Thompson ◽  
Nima Shamsaei ◽  
Linkan Bian ◽  
...  

Selective Laser Melting (SLM), a laser powder-bed fusion (PBF-L) additive manufacturing method, utilizes a laser to selectively fuse adjacent metal powders. The powders are aligned in a bed that moves vertically to allow for layer-by-layer part construction-Process-related heat transfer and thermal gradients have a strong influence on the microstructural features, and subsequent mechanical properties, of the parts fabricated via SLM. In order to understand and control the heat transfer inherent to SLM, and to ensure high quality parts with targeted microstructures and mechanical properties, comprehensive knowledge of the related energy and mass transport during manufacturing is required. In this study, the transient temperature distribution within and around parts being fabricated via SLM is numerically simulated and the results are provided to aid in quantify the SLM heat transfer. In order to verify simulation output, and to estimate actual thermal gradients and heat transfer, experiments were separately conducted within a SLM machine using a substrate with embedded thermocouples. The experiments focused on characterizing heat fluxes during initial deposition on an initially-cold substrate and during the fabrication of a thin-walled structure built via stainless steel 17-4 powders. Results indicate that it is important to model heat transfer thorough powder bed as well as substrate.


2015 ◽  
Vol 828-829 ◽  
pp. 474-481 ◽  
Author(s):  
Ivan Zhirnov ◽  
Ina Yadroitsava ◽  
Igor Yadroitsev

Selective laser melting (SLM) is a modern method for producing objects with complex shape and fine structures in one working cycle from metal powders. Combination of the advanced technology of SLM with unique properties of Ti6Al4V alloy allows creating complex 3D objects for medicine or aerospace industry. Since properties of SLM parts depend on the geometrical characteristics of tracks and their cohesion, optical monitoring is actually used to for control the process. Temperature gradient determines the microstructure and mechanical properties of the SLM part, so studies about temperature fields are primarily important. On-line monitoring during laser scanning of Ti6Al4V alloy and formation of a single track in real-time with high-speed IR camera was studied. Numerical simulation allowed estimation the temperature distribution during processing. Conclusion regarding control system based on the online monitoring of deviations of the signal from IR camera during the SLM process was done.


Sign in / Sign up

Export Citation Format

Share Document