Combination of improved Harris’s hawk optimization with fuzzy to improve clustering in wireless sensor network

2021 ◽  
pp. 1-16
Author(s):  
V. Nivedhitha ◽  
P. Thirumurugan ◽  
A. Gopi Saminathan ◽  
V. Eswaramoorthy

A Wireless Sensor Network (WSN) is divided into groups of sensor nodes for efficient transmission of data from the point of measuring to sink. By performing clustering, the network remains energy-efficient and stable. An intelligent mechanism is needed to cluster the sensors and find an organizer node, the cluster head. The organizer node assembles data from its constituent nodes called member nodes, finds an optimal route to the sink of the network, and transfers the same. The nomination of cluster head is crucial since energy utilization is a major challenge of sensor nodes deployed over a hostile environment. In this paper, a fuzzy-based Improved Harris’s Hawk Optimization Algorithm (IHHO) is proposed to select an able cluster head for data communication. The fuzzy inference model ponders balance energy, distance from self to sink node, and vicinity of nodes from cluster head as input factors and decides if a candidate node is eligible for becoming a cluster head. The IHHO tunes the logic into an energy-efficient network with less complexity and more ease. The novelty of the paper lies in applying the hawk-pack technique based on fuzzy rules. Simulations show that the combination of Fuzzy based IHHO reduces the death of nodes through which network lifetime is enhanced.

Author(s):  
Gaurav Kumar Nigam ◽  
Chetna Dabas

Background & Objective: Wireless sensor networks are made up of huge amount of less powered small sensor nodes that can audit the surroundings, collect meaningful data, and send it base station. Various energy management plans that pursue to lengthen the endurance of overall network has been proposed over the years, but energy conservation remains the major challenge as the sensor nodes have finite battery and low computational capabilities. Cluster based routing is the most fitting system to help for burden adjusting, adaptation to internal failure, and solid correspondence to draw out execution parameters of wireless sensor network. Low energy adaptive clustering hierarchy is an efficient clustering based hierarchical protocol that is used to enhance the lifetime of sensor nodes in wireless sensor network. It has some basic flaws that need to be overwhelmed in order to reduce the energy utilization and inflating the nodes lifetime. Methods : In this paper, an effective auxiliary cluster head selection is used to propose a new enhanced GC-LEACH algorithm in order to minimize the energy utilization and prolonged the lifespan of wireless sensor network. Results & Conclusion: Simulation is performed in NS-2 and the outcomes show that the GC-LEACH outperforms conventional LEACH and its existing versions in the context of frequent cluster head rotation in various rounds, number of data packets collected at base station, as well as reduces the energy consumption 14% - 19% and prolongs the system lifetime 8% - 15%.


2019 ◽  
Vol 16 (9) ◽  
pp. 3925-3931
Author(s):  
Bhupesh Gupta ◽  
Sanjeev Rana

For resource constraint network, one uses wireless sensor network in which limited resources are there for sensor nodes. Basic aim of sensor node is to sense something, monitor it and explain it. The issue arises for sensor node is its battery endurance. The battery endurance of sensor node is consuming in communication instead of sensing. In this regard clustering is using now a day’s which reduces endurance consumption. This paper comes with a new clustering protocol MESAEED (Mutual Exclusive Sleep Awake Energy Efficient Distributed clustering), which helps in saving endurance of sensor nodes so that network lifetime will prolong. It is an extension work of previous work MESADC. In previous work cluster head is chooses on the basis of sleep awake mode in mutual exclusive way under communication range and the results were obtained with the help of comparison graph between HEED and MESADC. The proposed MESAEED protocol provides benefit of A* algorithm of heuristic search, HEED and MESADC. MATLAB 8.3 is use for simulation purpose. The comparison graph between HEED, MESADC and proposed MESAEED were shown. Parameters for comparison include alive nodes versus number of rounds taken and number of nodes dead versus number of rounds taken. The graph shows improvement in performance over HEED and MESADC, which results in enhancing lifetime of WSN.


The technological advances in wireless communication systems and digital data processing techniques has given rise to many innovative intelligent networks. One such network is wireless sensor network (WSN). In recent past, huge growth has been perceived in the applications of WSN. In wireless sensor network, the battery powered sensor nodes are scattered in a monitoring area and it is impossible to replace the batteries of sensor nodes after deployment. Therefore, energy efficiency remains a prime concern in design of WSNs. The routing protocols help to find energy efficient routes and increases the lifetime of WSNs. The cluster-based routing techniques play an important role in design of energy efficient WSNs. However, authors analyzed two types of sensor networks in the literature such as homogeneous and heterogeneous networks. In homogeneous clustering, all sensor nodes possess same level of initial energy and cluster head (CH) formation probability of each node in such networks remains equal. In heterogeneous clustering, the nodes are bifurcated into three energy levels such as normal node, advanced node and super node. Therefore, the CH formation probability of a node in such network depends on the type of node. This paper presented a survey on recent energy efficient routing protocols in homogeneous as well as heterogeneous wireless sensor networks. The energy efficient routing protocols are classified based on some quality of service (QoS) metrics such as energy efficiency, network lifetime, network stability, cluster head selection threshold and heterogeneity levels.


2020 ◽  
Vol 21 (3) ◽  
pp. 555-568
Author(s):  
Anshu Kumar Dwivedi ◽  
A. K. Sharma

The uttermost requirement of the wireless sensor network is prolonged lifetime. Unequal energy degeneration in clustered sensor nodes lead to the premature death of sensor nodes resulting in a lessened lifetime. Most of the proposed protocols primarily choose cluster head on the basis of a random number, which is somewhat discriminating as some nodes which are eligible candidates for cluster head role may be skipped because of this randomness. To rule out this issue, we propose a deterministic novel energy efficient fuzzy logic based clustering protocol (NEEF) which considers primary and secondary factors in fuzzy logic system while selecting cluster heads. After selection of cluster heads, non-cluster head nodes use fuzzy logic for prudent selection of their cluster head for cluster formation. NEEF is simulated and compared with two recent state of the art protocols, namely SCHFTL and DFCR under two scenarios. Simulation results unveil better performance by balancing the load and improvement in terms of stability period, packets forwarded to the base station, improved average energy and extended lifetime.


Author(s):  
Boselin Prabhu ◽  
Bala Kumar

Wireless sensor network (WSN) is a low-powered prestigious network fashioned by sensor nodes that treasures application in civilian, military, visual sense models and many others. Reduced energy utilization is an exigent task for these sensor networks. By the data aggregation procedure, needless communication between sensor nodes, cluster head and the base station is eluded. An evaluation of energy efficient optical low energy adaptive clustering hierarchy has been performed and the enactments have been compared with the prevailing low energy adaptive clustering hierarchy algorithm, between two detached wireless sensor network fields. The proposed clustering procedure has been primarily implemented to join two distinct wireless sensor fields. An optical fiber is used to join two reserved wireless sensor fields. This distributed clustering methodology chiefly targets in exploiting the parameters like network lifetime, throughput and energy efficiency of the whole wireless sensor system.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6127 ◽  
Author(s):  
Yun Xu ◽  
Wanguo Jiao ◽  
Mengqiu Tian

In the wireless sensor network, the lifetime of the network can be prolonged by improving the efficiency of limited energy. Existing works achieve better energy utilization, either through node scheduling or routing optimization. In this paper, an efficient solution combining node scheduling with routing protocol optimization is proposed in order to improve the network lifetime. Firstly, to avoid the redundant coverage, a node scheduling scheme that is based on a genetic algorithm is proposed to find the minimum number of sensor nodes to monitor all target points. Subsequently, the algorithm prolongs the lifetime of the network through choosing redundant sleep nodes to replace the dead node. Based on the obtained minimum coverage set, a new routing protocol, named Improved-Distributed Energy-Efficient Clustering (I-DEEC), is proposed. When considering the energy and the distance of the sensor node to the sink, a new policy choosing the cluster head is proposed. To make the energy load more balanced, uneven clusters are constructed. Meanwhile, the data communication way of sensor nodes around the sink is also optimized. The simulation results show that the proposed sensor node scheduling algorithm can reduce the number of redundant sensor nodes, while the I-DEEC routing protocol can improve the energy efficiency of data transmission. The lifetime of the network is greatly extended.


2013 ◽  
Vol 347-350 ◽  
pp. 1738-1742 ◽  
Author(s):  
Xiao Wen Ma ◽  
Xiang Yu

Wireless sensor networks comprise of minor battery driven devices with restricted energy resources.Once installed,the minor sensor nodes are usually unapproachable to the operator, and thus auxiliary of the energy source is not practicable.Hence,energy proficiency is a vital design issue that needs to be boosted in order to increase the lifetime of the network. LEACH is a popular hierarchical routing protocol which efficiently maintains the energy storage of nodes in Wireless Sensor Network (WSN).The nodes using LEACH are divided into clusters.The advantage of LEACH is that each node has the equal probability to be a cluster head,which makes the energy dissipation of each node be relatively balanced. This paper studies LEACH protocol, and focuses on how to decide the next hop nodes more reasonable when the data are transmitted at the steady state. Simulation has been done in NS2 and the results show that the algorithm after improved is more energy-efficient than LEACH protocol.


Author(s):  
S. Venkatesan ◽  
M. Ramakrishnan

The Wireless Sensor Network (W.S.N.) comprises little batteries fueled sensor gadgets with restricted energy assets. The Sensor hubs used to monitor the physical screen or conditionsbased on normal, theinformation must be private organization to primary area. The Most significant obstacles in a sensing the remote in the particular network which used to make an efficient energy framework. Clustering is the one of the major process in the sensor network based on wireless which used to drag out the life time of an organization lifetime which in turn reduce the energy utilization of the network. It includes gathering hubs into groups and choosing bunch heads (CH) for all the groups. CH gather information from separate group hubs and forward the collected data to the fundamental corner. This paper proposes novel fluffy various dynamic methodology measures: “Energy Efficient Optimal Cluster Head Selection utilizing Fuzzy Logic (EEOCH-FL)” for Wireless Sensor Network. Fluffy different boundary dynamic methodology is used to choose C.H.s utilizing three standards: leftover energy, fixation, the right ways from the principle hubs, and base station. The life cycle of Clustering hub and Clustering Head are grouped, clustering hub which transmitted all data to the Cluster Header Leader (CHL). The bunch head pioneers sent collected information to the Base Station (B.S.) from that point forward. The determination of bunch heads, group head pioneers is controlled and monitored by utilizing a fluffy rationale. The information transmission measure is per-shaped by the briefest energy way chosen to apply Dijkstra Algorithm. The reenactment results show that this methodology is more potent in boosting the availability inside each bunch. Furthermore, the reproduction aftereffects of this examination are contrasted and different conventions LEACH and CEELRP to assess the proposed steering convention's presence. The assessment reasons that convention of steering of this proposed work proved to be an effective in utilization of an energy


Wireless sensor network environment based on limited resources technology. Energy is one of the most significant resources in such systems, so ideal utilization of energy is essential. A high energy efficient with trustable routingprotocol for Wireless_Sensor_Networks covered under this_paper. The protocol is trustworthy as far as data conveyance at the Base_Station. We assumed about portability in sensor nodes and in the base station. The proposed protocol depends on the cluster and hierarchical routing protocols. All clusters comprises of unique cluster-head-node and two-deputy-clusterhead-nodes, and several normal sensor-nodes. The cluster-head panel model introduced to optimize the re-clustering time and energy prerequisites. As consider the protocol trustworthiness, it lays finest exertion to guarantee a predetermined level of performance at the base-station. Contingent upon the network topology, transmit data from cluster head node to base station that done either by direct or indirect i.e. multi-hop way. Also, substitute ways are utilized for data transmission between a cluster head node and the base station. Thorough NS2 simulation-results delineate energy-efficiency, throughput, and delayed-lifetime of sensor-nodes affected by the proposedprotocol.


2018 ◽  
Vol 7 (2.27) ◽  
pp. 138
Author(s):  
Kamini Joshi ◽  
Sandeep Singh Kang

The wireless sensor network is the decentralized type of network which can sense information and pass it to base station. The energy consumption is the major issue of WSN due to small of sensor nodes and far deployment of the network. The clustering is the efficient approach to increase lifetime of the sensor network. In the approach of clustering cluster head are selected for the data aggregation. The fuzzy logic rules are derived based on node energy, distance to base station for the cluster head selection, which increase lifetime of sensor nodes in the existing system. In this research work, cache nodes are deployed in the network which reduce energy consumption of WSN. In the proposed approach cluster head send data to cache nodes and it will forward data to base station. The simulation is performed in MATLAB and proposed technique performs well in terms of number of packets transmitted, number of dead nodes, network lifetime, throughput and remaining energy.  


Sign in / Sign up

Export Citation Format

Share Document