Lack of Association of Locus Coeruleus Pathology with Orthostatic Hypotension in Parkinson’s Disease

2020 ◽  
pp. 1-5
Author(s):  
Qiang Tong ◽  
Liam Chen

Orthostatic hypotension (OH) is a common non-motor symptom in Parkinson’s disease (PD) and is linked with increased mortality risk among the elderly. Although the locus coeruleus (LC) is the major source of noradrenaline (NA) modulation in the brain, its role in the pathogenesis of OH in PD remains largely elusive. Here we examined 44 well characterized postmortem brains of PD patients and available clinical data to explore the relationship between OH and LC pathology in PD. Our results failed to indicate that the LC pathology as well as the substantia nigra pathology were robustly associated with the presence of OH in PD patients, suggesting targeting LC norepinephrinergic system alone may not be sufficient to treat OH in PD.

Author(s):  
Antonina Kouli ◽  
Marta Camacho ◽  
Kieren Allinson ◽  
Caroline H. Williams-Gray

AbstractParkinson’s disease dementia is neuropathologically characterized by aggregates of α-synuclein (Lewy bodies) in limbic and neocortical areas of the brain with additional involvement of Alzheimer’s disease-type pathology. Whilst immune activation is well-described in Parkinson’s disease (PD), how it links to protein aggregation and its role in PD dementia has not been explored. We hypothesized that neuroinflammatory processes are a critical contributor to the pathology of PDD. To address this hypothesis, we examined 7 brain regions at postmortem from 17 PD patients with no dementia (PDND), 11 patients with PD dementia (PDD), and 14 age and sex-matched neurologically healthy controls. Digital quantification after immunohistochemical staining showed a significant increase in the severity of α-synuclein pathology in the hippocampus, entorhinal and occipitotemporal cortex of PDD compared to PDND cases. In contrast, there was no difference in either tau or amyloid-β pathology between the groups in any of the examined regions. Importantly, we found an increase in activated microglia in the amygdala of demented PD brains compared to controls which correlated significantly with the extent of α-synuclein pathology in this region. Significant infiltration of CD4+ T lymphocytes into the brain parenchyma was commonly observed in PDND and PDD cases compared to controls, in both the substantia nigra and the amygdala. Amongst PDND/PDD cases, CD4+ T cell counts in the amygdala correlated with activated microglia, α-synuclein and tau pathology. Upregulation of the pro-inflammatory cytokine interleukin 1β was also evident in the substantia nigra as well as the frontal cortex in PDND/PDD versus controls with a concomitant upregulation in Toll-like receptor 4 (TLR4) in these regions, as well as the amygdala. The evidence presented in this study show an increased immune response in limbic and cortical brain regions, including increased microglial activation, infiltration of T lymphocytes, upregulation of pro-inflammatory cytokines and TLR gene expression, which has not been previously reported in the postmortem PDD brain.


Author(s):  
Vaibhav Walia ◽  
Ashish Gakkhar ◽  
Munish Garg

Parkinson's disease (PD) is a neurodegenerative disorder in which a progressive loss of the dopaminergic neurons occurs. The loss of the neurons is most prominent in the substantia nigra region of the brain. The prevalence of PD is much greater among the older patients suggesting the risk of PD increases with the increase of age. The exact cause of the neurodegeneration in PD is not known. In this chapter, the authors introduce PD, demonstrate its history, pathogenesis, neurobiology, sign and symptoms, diagnosis, and pharmacotherapy.


2013 ◽  
Vol 541 ◽  
pp. 93-98 ◽  
Author(s):  
Chigumi Ohtsuka ◽  
Makoto Sasaki ◽  
Kanako Konno ◽  
Mizuho Koide ◽  
Kanako Kato ◽  
...  

2012 ◽  
Vol 26 (S1) ◽  
Author(s):  
Nandhini Kanagaraj ◽  
S Thameem Dheen ◽  
Zhao Feng Peng ◽  
Dinesh Kumar Srinivasan ◽  
Samuel S W Tay

2018 ◽  
Author(s):  
Pedro D. Maia ◽  
Sneha Pandya ◽  
Justin Torok ◽  
Ajay Gupta ◽  
Yashar Zeighami ◽  
...  

AbstractParkinson’s Disease (PD) is a the second most common neurodegenerative disorder after Alzheimer’s disease and is characterized by cell death in the amygdala and in substructures of the basal ganglia such as the substantia nigra. Since neuronal loss in PD leads to measurable atrophy patterns in the brain, there is clinical value in understanding where exactly the pathology emerges in each patient and how incipient atrophy relates to the future spread of disease. A recent seed-inference algorithm combining an established network-diffusion model with an L1-penalized optimization routine led to new insights regarding the non-stereotypical origins of Alzheimer’s pathologies across individual subjects. Here, we leverage the same technique to PD patients, demonstrating that the high variability in their atrophy patterns also translates into heterogeneous seed locations. Our individualized seeds are significantly more predictive of future atrophy than a single seed placed at the substantia nigra or the amygdala. We also found a clear distinction in seeding patterns between two PD subgroups – one characterized by predominant involvement of brainstem and ventral nuclei, and the other by more widespread frontal and striatal cortices. This might be indicative of two distinct etiological mechanisms operative in PD. Ultimately, our methods demonstrate that the early stages of the disease may exhibit incipient atrophy patterns that are more complex and variable than generally appreciated.


2019 ◽  
Author(s):  
Isabel Cristina Echeverri ◽  
Maria de la Iglesia Vayá ◽  
Jose Molina Mateo ◽  
Francia Restrepo de Mejia ◽  
Belarmino Segura Giraldo

Context: Parkinson’s disease (PD) is catalogued as a disorder that causes motor symptoms; the evidence of literature shows the PD starts with non-motor signs, which can be detected in prodromal phases. These previous phases can be analyzed and studied through magnetic resonance images (MRI), electroencephalography (EEG) and microbiome.Objective: To systematically review the areas of the brain and brain-gut axis which affect in early Parkinson’s disease that can possibly be visualized and analyzed by MRI, EEG and the microbiome.Evidence acquisition: Pubmed and Embase databases were used until July 30, 2018 as to search for early Parkinson’s disease at its earliest non-motor symptoms stage by using MRI, EEG, and microbiome. The search was performed according to the requirements of a systematic review. In order to identify reports, we evaluated them following the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) criteria. Evidence synthesis: MRI and EEG have provided the advances to find features for PD over the last decade. Those techniques identify motor symptoms on substantia nigra where the patient shows a dopamine deficiency. However, over recent years, researchers have found that PD has prodromal phases, that is, PD is not simply a neurodegenerative disorder characterized by the dysfunction of dopaminergic. Thus, high field MRI, event-related potential (ERP) and microbiota data shows a significant change on the brain cortex, white and grey matter, the extrapyramidal system, brain signals and the gut.Conclusion: The structural MRI is a useful technique in detecting the stages of motor symptoms on the substantia nigra in patients with PD. The use of magnetic resonance as an early detector requires a high magnetic field, as to identify the areas which diagnose that the patient could be in the premotor stages. On the other hand, EEG performed well in detecting PD features. Furthermore, microbiome sequencing might include the classification of bacterial families that could help to detect PD in its prodromal phase. Thus, the combination of all these techniques can support the possibility of diagnosing PD in its very early stages.


2022 ◽  
Author(s):  
Min Hyung Seo ◽  
Sujung Yeo

Abstract Parkinson’s disease (PD) is known as the second most common neurodegenerative disease, which is caused by destruction of dopaminergic neurons in the substantia nigra (SN) of the brain; however, the reason for the death of dopaminergic neurons remains unclear. An increase in α-synuclein (α-syn) is considered an important factor in the pathogenesis of PD. In the current study, we investigated the association between PD and serine/arginine-rich protein specific kinase 3 (Srpk3) in MPTP-induced parkinsonism mice model and in SH-SY5Y cells treated with MPP+. Srpk3 expression was significantly downregulated, while tyrosine hydroxylase (TH) decreased and α-synuclein (α-syn) increased after 4 weeks of MPTP intoxication treatment. Dopaminergic cell reduction and α-syn increase were demonstrated by inhibiting Srpk3 expression by siRNA in SH-SY5Y cells. Moreover, a decrease in Srpk3 expression upon siRNA treatment promoted dopaminergic cell reduction and α-syn increase in SH-SY5Y cells treated with MPP+. These results suggest that the decrease in Srpk3 expression due to Srpk3 siRNA caused both a decrease in TH and an increase in α-syn. This raises new possibilities for studying how Srpk3 controls dopaminergic cells and α-syn expression, which may be related to the pathogenesis of PD. Our results provide an avenue for understanding the role of Srpk3 during dopaminergic cell loss and α-syn increase in the SN. Furthermore, this study could support a therapeutic possibility for PD in that the maintenance of Srpk3 expression inhibited dopaminergic cell reduction.


Sign in / Sign up

Export Citation Format

Share Document